「抑制性アミノ酸」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
13行目: 13行目:
 GABAの合成に関しては、[[wikipedia:ja:TCAサイクル|TCAサイクル]]の[[wikipedia:ja:α-ケトグルタル酸|α-ケトグルタル酸]]からグルタミン酸を経由してGABAが合成される経路がある。また、神経終末部では、細胞外から[[グルタミン酸輸送体]]により、グルタミン酸が取り込まれてGAD65によりGABAが合成される。GABAの分解過程では、GABAは[[GABA transaminase]]により[[コハク酸セミアルデヒド]]となり、その後酸化されて[[コハク酸]]となりTCAサイクルに入る。
 GABAの合成に関しては、[[wikipedia:ja:TCAサイクル|TCAサイクル]]の[[wikipedia:ja:α-ケトグルタル酸|α-ケトグルタル酸]]からグルタミン酸を経由してGABAが合成される経路がある。また、神経終末部では、細胞外から[[グルタミン酸輸送体]]により、グルタミン酸が取り込まれてGAD65によりGABAが合成される。GABAの分解過程では、GABAは[[GABA transaminase]]により[[コハク酸セミアルデヒド]]となり、その後酸化されて[[コハク酸]]となりTCAサイクルに入る。


 GABAは、[[GABAA受容体|GABA<sub>A</sub>受容体]]、[[GABAB受容体|GABA<sub>B</sub>受容体]]、[[GABAC受容体|GABA<sub>C</sub>受容体]]の3種の受容体に作用することによってその生理機能を発揮する。GABAAとGABAB受容体は中枢神経系に広く分布し、GABAC受容体は成熟[[wikipedia:ja:|脊椎動物]]ではほぼ[[網膜]]のみに限局して分布する。GABAAとGABAC受容体は[[イオンチャネル型受容体]]で、Cl-を透過させる。GABAA受容体はαサブユニット、βサブユニット、γサブユニット、δサブユニット、εサブユニットなどによって構成される五量体であるが、脳部位によってサブユニットの発現が異なっている。また、構成サブユニットの違いにより薬物に対する感受性も異なる。GABAC受容体は ρサブユニットで形成される五量体であり、GABAA受容体を抑制する[[ビククリン]]に感受性がないなど、GABAA受容体とは薬物感受性がかなり異なっている。
 GABAは、[[GABAA受容体|GABA<sub>A</sub>受容体]]、[[GABAB受容体|GABA<sub>B</sub>受容体]]、[[GABAC受容体|GABA<sub>C</sub>受容体]]の3種の受容体に作用することによってその生理機能を発揮する。GABAAとGABAB受容体は中枢神経系に広く分布し、GABAC受容体は成熟[[wikipedia:ja:脊椎動物|脊椎動物]]ではほぼ[[網膜]]のみに限局して分布する。GABAAとGABAC受容体は[[イオンチャネル型受容体]]で、Cl-を透過させる。GABAA受容体はαサブユニット、βサブユニット、γサブユニット、δサブユニット、εサブユニットなどによって構成される五量体であるが、脳部位によってサブユニットの発現が異なっている。また、構成サブユニットの違いにより薬物に対する感受性も異なる。GABAC受容体は ρサブユニットで形成される五量体であり、GABAA受容体を抑制する[[ビククリン]]に感受性がないなど、GABAA受容体とは薬物感受性がかなり異なっている。


 GABAAおよびGABAC受容体を介した抑制効果は、神経細胞内のCl-濃度により変化する。通常、成熟期の神経細胞内Cl-濃度は低く保たれており、Cl-の[[平衡電位]]は[[静止電位]]よりも[[過分極]]側にあるため、GABAA受容体およびGABAC受容体の応答は過分極性である。しかし、発達期においてGABAは[[脱分極]]作用(興奮性作用)を示すことがある。これは、細胞内からCl-を排出する役割を担うトランスポーターの機能や発現が、成熟期の神経細胞と異なるためである。
 GABAAおよびGABAC受容体を介した抑制効果は、神経細胞内のCl-濃度により変化する。通常、成熟期の神経細胞内Cl-濃度は低く保たれており、Cl-の[[平衡電位]]は[[静止電位]]よりも[[過分極]]側にあるため、GABAA受容体およびGABAC受容体の応答は過分極性である。しかし、発達期においてGABAは[[脱分極]]作用(興奮性作用)を示すことがある。これは、細胞内からCl-を排出する役割を担うトランスポーターの機能や発現が、成熟期の神経細胞と異なるためである。
21行目: 21行目:
== グリシン ==
== グリシン ==


 グリシンはタンパク質を構成するアミノ酸の中でも最も単純な構造を持っており、不斉炭素を持たないため、D体や L 体といった[[wikipedia:ja:|立体異性体]]が存在しない。中枢神経系においては、GABAとともに抑制性シナプス伝達を担うが、[[NMDA型グルタミン酸受容体]]に結合してその機能を上昇させることから、興奮性伝達にも重要な役割を果たしている。グリシンは、主に脊髄や脳幹においてGABAとともに抑制性神経伝達物質として働くが、[[大脳皮質]]などの上位中枢では抑制性シナプス伝達はGABAが担っている。
 グリシンはタンパク質を構成するアミノ酸の中でも最も単純な構造を持っており、不斉炭素を持たないため、D体や L 体といった[[wikipedia:ja:立体異性体|立体異性体]]が存在しない。中枢神経系においては、GABAとともに抑制性シナプス伝達を担うが、[[NMDA型グルタミン酸受容体]]に結合してその機能を上昇させることから、興奮性伝達にも重要な役割を果たしている。グリシンは、主に脊髄や脳幹においてGABAとともに抑制性神経伝達物質として働くが、[[大脳皮質]]などの上位中枢では抑制性シナプス伝達はGABAが担っている。


 グリシンは、食事から摂取する他、生体内でもいくつかの経路で合成される。生体内では、1)[[wikipedia:ja:|グリオキシル酸]]とグルタミン酸から[[wikipedia:ja:|グリシントランスアミナーゼ]]の作用により合成され、2)グルタミン酸デカルボキシラーゼ、[[wikipedia:ja:|セリンヒドロキシメチルトランスフェラーゼ]]によって葉酸依存性にセリンから合成される。また、3)[[wikipedia:ja:|スレオニン]](threonine)の[[wikipedia:ja:|異化]]や、4)[[wikipedia:ja:|コリン]]の代謝によってもグリシンが生成する。
 グリシンは、食事から摂取する他、生体内でもいくつかの経路で合成される。生体内では、1)[[wikipedia:ja:グリオキシル酸|グリオキシル酸]]とグルタミン酸から[[wikipedia:ja:グリシントランスアミナーゼ|グリシントランスアミナーゼ]]の作用により合成され、2)グルタミン酸デカルボキシラーゼ、[[wikipedia:ja:セリンヒドロキシメチルトランスフェラーゼ|セリンヒドロキシメチルトランスフェラーゼ]]によって葉酸依存性にセリンから合成される。また、3)[[wikipedia:ja:スレオニン|スレオニン]](threonine)の[[wikipedia:ja:異化|異化]]や、4)[[wikipedia:ja:コリン|コリン]]の代謝によってもグリシンが生成する。


 抑制性伝達物質としてグリシンが機能するためには、シナプス前神経終末部の[[シナプス小胞]]にグリシンが取り込まれて、神経終末部から放出される必要がある。グリシンを放出する抑制性シナプス前神経終末部には、[[グリシントランスポーター2型]]([[GlyT2]])が発現しており、これによってグリシンが神経終末部内へ取り込まれることにより、グリシン濃度が高まる。神経終末部に取り込まれたグリシンは、[[小胞型抑制性アミノ酸運搬体]]([[VIAAT]]、[[VGAT]]とも呼ばれる)によりシナプス小胞内へ充填され、神経終末部から放出される。小胞型抑制性アミノ酸運搬体はグリシンだけでなくGABAも輸送するので、単一神経終末部から GABAとグリシンが共放出(co-release)されることがある。
 抑制性伝達物質としてグリシンが機能するためには、シナプス前神経終末部の[[シナプス小胞]]にグリシンが取り込まれて、神経終末部から放出される必要がある。グリシンを放出する抑制性シナプス前神経終末部には、[[グリシントランスポーター2型]]([[GlyT2]])が発現しており、これによってグリシンが神経終末部内へ取り込まれることにより、グリシン濃度が高まる。神経終末部に取り込まれたグリシンは、[[小胞型抑制性アミノ酸運搬体]]([[VIAAT]]、[[VGAT]]とも呼ばれる)によりシナプス小胞内へ充填され、神経終末部から放出される。小胞型抑制性アミノ酸運搬体はグリシンだけでなくGABAも輸送するので、単一神経終末部から GABAとグリシンが共放出(co-release)されることがある。

案内メニュー