「Dab1」の版間の差分

ナビゲーションに移動 検索に移動
555 バイト追加 、 2013年1月18日 (金)
編集の要約なし
編集の要約なし
編集の要約なし
52行目: 52行目:
 2000年になり、ApoER2とVLDLRのダブルノックアウトマウスが、リーラーフェノタイプになること<ref name="ref2"><pubmed>10380922</pubmed></ref>が明らかになり、さらに生化学的結合実験等により、ApoER2とVLDLRがReelinの[[wikipedia:ja:受容体|レセプター]]であることが示された<ref><pubmed>10571241</pubmed></ref><ref><pubmed>10571240</pubmed></ref>。またApoER2とVLDLRの細胞内ドメインのNPxYモチーフにDab1のPTBドメインを介して結合出来る事が示され、Dab1はApoER2、VLDLRを介してReelinシグナルを受け取る事が示唆された<ref name="ref2" />。また同年、活性化型Srcによってチロシンリン酸化を受ける可能性のある5つのチロシンが同定され、この5つのチロシンリン酸化部位全てをフェニルアラニンに変異させた[[wikipedia:Gene knockin|ノックインマウス]]が、リーラーフェノタイプになる事が示された<ref name="5F"><pubmed>10959835</pubmed></ref>。この実験結果により、Dab1のチロシンリン酸化はReelinシグナルにとって必須であることが示された。  
 2000年になり、ApoER2とVLDLRのダブルノックアウトマウスが、リーラーフェノタイプになること<ref name="ref2"><pubmed>10380922</pubmed></ref>が明らかになり、さらに生化学的結合実験等により、ApoER2とVLDLRがReelinの[[wikipedia:ja:受容体|レセプター]]であることが示された<ref><pubmed>10571241</pubmed></ref><ref><pubmed>10571240</pubmed></ref>。またApoER2とVLDLRの細胞内ドメインのNPxYモチーフにDab1のPTBドメインを介して結合出来る事が示され、Dab1はApoER2、VLDLRを介してReelinシグナルを受け取る事が示唆された<ref name="ref2" />。また同年、活性化型Srcによってチロシンリン酸化を受ける可能性のある5つのチロシンが同定され、この5つのチロシンリン酸化部位全てをフェニルアラニンに変異させた[[wikipedia:Gene knockin|ノックインマウス]]が、リーラーフェノタイプになる事が示された<ref name="5F"><pubmed>10959835</pubmed></ref>。この実験結果により、Dab1のチロシンリン酸化はReelinシグナルにとって必須であることが示された。  


 2003年以降、チロシンリン酸化されたDab1に結合する様々なタンパク質が報告され、現在までに[[wikipedia:ja:PI3キナーゼ|Phosphoinositide 3-kinase (PI3K)]]<ref><pubmed>12882964</pubmed></ref>、[[wikipedia:SOCS3|SOCS3]]<ref><pubmed>17974915</pubmed></ref>、[[wikipedia:NCK2|Nck&amp;amp;amp;amp;amp;lt;math&amp;amp;amp;amp;amp;gt;\beta&amp;amp;amp;amp;amp;lt;/math&amp;amp;amp;amp;amp;gt;]]<ref><pubmed>14517291</pubmed></ref>、[[wikipedia:PAFAH1B1|Lis1]]<ref><pubmed>14578885</pubmed></ref>、[[wikipedia:Src family kinase|Src family kinase]]<ref name="ref1" /><ref><pubmed>18981215</pubmed></ref>、Crkファミリータンパク質(Crk、CrkL)<ref name="crk"><pubmed>15062102</pubmed></ref><ref><pubmed>15316068</pubmed></ref><ref><pubmed>15110774</pubmed></ref>がDab1のチロシンリン酸化依存的に結合することが報告されている。このうち''crk''と''crkl''ダブルノックアウトマウス<ref name="crk"><pubmed>19074029</pubmed></ref>、''c3g''の[[wikipedia:ja:ジーントラップ法|ジーントラップ]]系統マウス<ref name="c3g"><pubmed>18506028</pubmed></ref>、及び''src''と[[wikipedia:FYN|''fyn'']]のダブルノックアウトマウス<ref><pubmed>16162939</pubmed></ref>においてはリーラーフェノタイプ様の異常が生じることが報告されている。  
 2003年以降、チロシンリン酸化されたDab1に結合する様々なタンパク質が報告され、現在までに[[wikipedia:ja:PI3キナーゼ|Phosphoinositide 3-kinase (PI3K)]]<ref><pubmed>12882964</pubmed></ref>、[[wikipedia:SOCS3|SOCS3]]<ref><pubmed>17974915</pubmed></ref>、[[wikipedia:NCK2|Nck&amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;math&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;\beta&amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;/math&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;]]<ref><pubmed>14517291</pubmed></ref>、[[wikipedia:PAFAH1B1|Lis1]]<ref><pubmed>14578885</pubmed></ref>、[[wikipedia:Src family kinase|Src family kinase]]<ref name="ref1" /><ref><pubmed>18981215</pubmed></ref>、Crkファミリータンパク質(Crk、CrkL)<ref name="crk"><pubmed>15062102</pubmed></ref><ref><pubmed>15316068</pubmed></ref><ref><pubmed>15110774</pubmed></ref>がDab1のチロシンリン酸化依存的に結合することが報告されている。このうち''crk''と''crkl''ダブルノックアウトマウス<ref name="crk"><pubmed>19074029</pubmed></ref>、''c3g''の[[wikipedia:ja:ジーントラップ法|ジーントラップ]]系統マウス<ref name="c3g"><pubmed>18506028</pubmed></ref>、及び''src''と[[wikipedia:FYN|''fyn'']]のダブルノックアウトマウス<ref><pubmed>16162939</pubmed></ref>においてはリーラーフェノタイプ様の異常が生じることが報告されている。  


 2004年には、''dab1''欠損マウスの[[wikipedia:Dentate gyrus|海馬歯状回]]の[[wikipedia:Granule cell|顆粒細胞]]の樹状突起が野生型に比べて突起の数が減少していること<ref name="Niu"><pubmed>14715136</pubmed></ref>、''dab1''欠損マウス由来の海馬神経細胞を培養した場合でも、樹状突起が短くなり、枝分かれの数も減少すること<ref name="Niu" />が報告された。また、2006年、''dab1''のノックダウン実験により、神経細胞の樹状突起形成が阻害されること<ref name="dab1KD"><pubmed>16467525</pubmed></ref>、生後、時期特異的に''dab1''にノックアウトした場合、海馬の樹状突起形成が阻害される<ref name="matsuki"><pubmed>18477607</pubmed></ref>ことが、報告され、Dab1は神経細胞の移動過程以外にも、樹状突起の発達にも関与することが示唆された。  
 2004年には、''dab1''欠損マウスの[[wikipedia:Dentate gyrus|海馬歯状回]]の[[wikipedia:Granule cell|顆粒細胞]]の樹状突起が野生型に比べて突起の数が減少していること<ref name="Niu"><pubmed>14715136</pubmed></ref>、''dab1''欠損マウス由来の海馬神経細胞を培養した場合でも、樹状突起が短くなり、枝分かれの数も減少すること<ref name="Niu" />が報告された。また、2006年、''dab1''のノックダウン実験により、神経細胞の樹状突起形成が阻害されること<ref name="dab1KD"><pubmed>16467525</pubmed></ref>、生後、時期特異的に''dab1''にノックアウトした場合、海馬の樹状突起形成が阻害される<ref name="matsuki"><pubmed>18477607</pubmed></ref>ことが、報告され、Dab1は神経細胞の移動過程以外にも、樹状突起の発達にも関与することが示唆された。  
102行目: 102行目:
=== Dab1の大脳新皮質神経発生における機能  ===
=== Dab1の大脳新皮質神経発生における機能  ===


 dab1欠損により引き起こされるこれらの神経細胞の移動障害が、''dab1''が欠損した細胞自身の障害によるものなのか、あるいは、''dab1''を欠損した周囲の細胞によって引き起こされた二次的な原因によるものなのか、あるいは両方なのか、Dab1の機能を解明する上で焦点となった。この問題を解決するため、野生型dab1を発現する細胞と''dab1''を欠損した細胞の[[wikipedia:Chimera (genetics)|キメラマウス]]が作成された<ref><pubmed>11698592</pubmed></ref>。その結果、野生型の''dab1を''発現する細胞群が''dab1''を欠損した細胞群の上に配置されるような大脳新皮質(スーパーコルテックス)が形成される一方、少数の野生型細胞が''dab1''欠損細胞群中に取り込まれることが示された。この結果より、''dab1''欠損による細胞の移動障害は主には細胞内因性の障害によって引き起こされているが、一部は周囲の細胞の障害にも影響されていることが示唆された。また、''dab1''を欠損した''scrambler''マウスや''yotari''マウスに''dab1''をレトロウイルスや''in utero'' [[wikipedia:ja:電気穿孔法|エレクトロポレーション法]]により導入し、Dab1の発現をレスキューした場合においても、''dab1''を導入された神経細胞は''dab1''を欠損した神経細胞を追い越して脳表層まで到達し'''<ref name="sanada"><pubmed>15091337</pubmed></ref><ref name="morimura"><pubmed>19796633</pubmed></ref>'''、プレプレートスプリッティングも引き起こす'''<ref name="morimura" />'''ことから、''dab1''欠損による移動障害が主には細胞内在性に引き起こされていることが示唆されている。  
 ''dab1''欠損により引き起こされるこれらの神経細胞の移動障害が、''dab1''が欠損した細胞自身の障害によるものなのか、あるいは、''dab1''を欠損した周囲の細胞によって引き起こされた二次的な原因によるものなのか、あるいは両方なのか、Dab1の機能を解明する上で焦点となった。この問題を解決するため、野生型dab1を発現する細胞と''dab1''を欠損した細胞の[[wikipedia:Chimera (genetics)|キメラマウス]]が作成された<ref><pubmed>11698592</pubmed></ref>。その結果、野生型の''dab1を''発現する細胞群が''dab1''を欠損した細胞群の上に配置されるような大脳新皮質(スーパーコルテックス)が形成される一方、少数の野生型細胞が''dab1''欠損細胞群中に取り込まれることが示された。この結果より、''dab1''欠損による細胞の移動障害は主には細胞内因性の障害によって引き起こされているが、一部は周囲の細胞の障害にも影響されていることが示唆された。また、''dab1''を欠損した''scrambler''マウスや''yotari''マウスに''dab1''をレトロウイルスや''in utero'' [[wikipedia:ja:電気穿孔法|エレクトロポレーション法]]により導入し、''dab1''の発現をレスキューした場合においても、''dab1''を導入された神経細胞は''dab1''を欠損した神経細胞を追い越して脳表層まで到達し'''<ref name="sanada"><pubmed>15091337</pubmed></ref><ref name="morimura"><pubmed>19796633</pubmed></ref>'''、プレプレートスプリッティングも引き起こす'''<ref name="morimura" />'''ことから、''dab1''欠損による移動障害が主には細胞内在性に引き起こされていることが示唆されている。  


 では、''dab1''の欠損により、何が一次的に障害されているのか?、この問題を解明する為に、周囲の細胞が正常な環境下で、一部の神経細胞でのみDab1の機能を阻害し、''dab1''の欠損によりどんな移動障害が引き起こされるのかが詳細に観察された。大脳新皮質の神経細胞は誕生時期の違いにより、異なる移動過程を経ることが知られている<ref><pubmed>20182622</pubmed></ref>。早生まれの神経細胞は脳室帯(ventricular zone:VZ)で誕生した後、もともと脳の表層にアンカリングしてあった突起を用いて細胞体を引き上げる、ソーマルトランスロケーション(somal translocation)と呼ばれる形式で、移動する<ref><pubmed>11567613</pubmed></ref>。一方、遅生まれの神経細胞は脳室帯で誕生した後、[[脳室下帯(subventricular zone)]]の直上で[[多極性の形態(多極性細胞)]]をとり、突起を出したり縮めたりしながら多極性移動([[Multipolar migration]])と呼ばれる移動を行い、その後、紡錘形の形態にトランスフォームして脳表面にロコモーション(locomotion)と呼ばれる方式で移動する<ref><pubmed>14602813</pubmed></ref>。さらに、脳表面付近では神経細胞の進行方向に長く伸びた[[先導突起(leading process)]]と呼ばれる突起を辺縁帯(marginal zone)付近まで伸ばし、核を引き上げる様に移動するターミナルトランスロケーションと呼ばれる移動様式により移動を行う。''in utero''エレクトロポレーションによってdab1のノックダウンが行われた結果、dab1が[[wikipedia:ja:遺伝子ノックダウン|ノックダウン]]された神経細胞は脳の表層近くまで移動するが、移動の最終過程であるターミナルトランスロケーションが障害されていることが示された<ref name="dab1KD" />。また、dab1のコンディショナルノックアウトマウスを用い、''in utero''エレクトロポレーションにより一部の細胞でdab1をノックアウトした実験では、早生まれの細胞ではソーマルトランスロケーションが阻害され、遅生まれの細胞ではターミナルトランスロケーションが阻害されていることが示された。さらにこれらの実験では樹状突起形成にも異常が生じる結果が報告されているが、ターミナルトランスロケーションも阻害されていることから、これらの実験での樹状突起形成の発達障害は二次的な影響との可能性も考えられる。しかしながら、海馬において生後3日に時期特異的に''dab1''をノックアウトした場合に、樹状突起形成に異常が生じること<ref name="matsuki" />、''dab1''ノックアウトマウスから得られた神経細胞を培養した場合にも樹状突起の形成に障害が生じること<ref name="Niu" />等から、dab1には樹状突起形成を促進する働きがあることが示唆されている。  
 では、''dab1''の欠損により、何が一次的に障害されているのか?、この問題を解明する為に、周囲の細胞が正常な環境下で、一部の神経細胞でのみDab1の機能を阻害し、''dab1''の欠損によりどんな移動障害が引き起こされるのかが詳細に観察された。大脳新皮質の神経細胞は誕生時期の違いにより、異なる移動過程を経ることが知られている<ref><pubmed>20182622</pubmed></ref>。早生まれの神経細胞は脳室帯(ventricular zone:VZ)で誕生した後、もともと脳の表層にアンカリングしてあった突起を用いて細胞体を引き上げる、ソーマルトランスロケーション(somal translocation)と呼ばれる形式で、移動する<ref><pubmed>11567613</pubmed></ref>。一方、遅生まれの神経細胞は脳室帯で誕生した後、[[脳室下帯(subventricular zone)]]の直上で[[多極性の形態(多極性細胞)]]をとり、突起を出したり縮めたりしながら多極性移動([[Multipolar migration]])と呼ばれる移動を行い、その後、紡錘形の形態にトランスフォームして脳表面にロコモーション(locomotion)と呼ばれる方式で移動する<ref><pubmed>14602813</pubmed></ref>。さらに、脳表面付近では神経細胞の進行方向に長く伸びた[[先導突起(leading process)]]と呼ばれる突起を辺縁帯(marginal zone)付近まで伸ばし、核を引き上げる様に移動するターミナルトランスロケーションと呼ばれる移動様式により移動を行う。''in utero''エレクトロポレーションによって''dab1''のノックダウンが行われた結果、''dab1''が[[wikipedia:ja:遺伝子ノックダウン|ノックダウン]]された神経細胞は脳の表層近くまで移動するが、移動の最終過程であるターミナルトランスロケーションが障害されていることが示された<ref name="dab1KD" /><ref name="sekine1"><pubmed>21697392</pubmed></ref>。さらに、Dab1依存的に神経細胞がターミナルトランスロケーションを行う部位は、発達した神経細胞のマーカーであるNeuNが陰性の、原始皮質帯 (primitive cortical zone:PCZ) に相当する部分であることが示された<ref name="sekine1" />。また、''dab1''のコンディショナルノックアウトマウスを用い、''in utero''エレクトロポレーションにより一部の細胞でdab1をノックアウトした実験では、早生まれの細胞ではソーマルトランスロケーションが阻害され、遅生まれの細胞ではターミナルトランスロケーションが阻害されていることが示された<ref name="ncad2" />。さらにこれらの実験では樹状突起形成にも異常が生じる結果が報告されているが、ターミナルトランスロケーションも阻害されていることから、これらの実験での樹状突起形成の発達障害は二次的な影響との可能性も考えられる。しかしながら、海馬において生後3日に時期特異的に''dab1''をノックアウトした場合に、樹状突起形成に異常が生じること<ref name="matsuki" />、''dab1''ノックアウトマウスから得られた神経細胞を培養した場合にも樹状突起の形成に障害が生じること<ref name="Niu" />等から、dab1には樹状突起形成を促進する働きがあることが示唆されている。  


[[Image:Dab1 signaling pathway.png|thumb|700px|<b>図3 大脳新皮質層形成時におけるDab1を介するシグナル伝達系の模式図</b><br>主にCajal-Retzius細胞から分泌されたReelinは移動神経細胞に発現するApoER2やVLDLRに結合し、FynあるいはSrcの活性化により、Dab1をリン酸化する。リン酸化されたDab1にはPI3K, SOCS3, Nck<math>\beta</math>, Crkが結合する。Crkの下流でC3GがRap1をGDP結合型からGTP結合型に変換し、活性化されたRap1はN-cadherinとIntegrin<math>\alpha</math>5<math>\beta</math>1の活性を制御すると考えられている。NotchとDab1の結合にDab1のリン酸化が必要かは明らかになっていない。]]  
[[Image:Dab1 signaling pathway.png|thumb|700px|<b>図3 大脳新皮質層形成時におけるDab1を介するシグナル伝達系の模式図</b><br>主にCajal-Retzius細胞から分泌されたReelinは移動神経細胞に発現するApoER2やVLDLRに結合し、FynあるいはSrcの活性化により、Dab1をリン酸化する。リン酸化されたDab1にはPI3K, SOCS3, Nck<math>\beta</math>, Crkが結合する。Crkの下流でC3GがRap1をGDP結合型からGTP結合型に変換し、活性化されたRap1はN-cadherinとIntegrin<math>\alpha</math>5<math>\beta</math>1の活性を制御すると考えられている。NotchとDab1の結合にDab1のリン酸化が必要かは明らかになっていない。]]  


<br>  Dab1が神経細胞移動を制御する分子メカニズムについてはチロシンリン酸化Dab1に結合する分子を中心に解析が進められて来ている。特にcrkとCrkLのダブルノックアウトマウス<ref name="crk" />とC3Gのジーントラップ系統マウス<ref name="c3g" />でリーラーフェノタイプが観察されることから、その下流分子としてRap1が注目された。 Rap1はRasスーパーファミリーに属する低分子量Gタンパク質で、CadherinやIntegrinを介して細胞接着を制御する重要な分子であり、Reelinにより活性化することが以前報告されている<ref name="crk" />。最近の報告により、Reelin-Dab1シグナルはCrk-C3G-Rap1経路を介して、ロコモーションの過程ではN-cadhrinを制御し<ref name="ncad1" /><ref name="ncad2" />、ターミナルトランスロケーションの過程ではIntegrin a5b1を介して神経細胞の移動過程をコントロールしていること<ref name="sekine2" />が示唆されている。Integrinを介した神経細胞移動に関しては、Integrin a3の関与も指摘されている<ref name="sanada" />。しかしながら、N-cadhelinを''reeler''マウスに導入しただけでは、神経細胞の移動がレスキューされないし<ref name="ncad1" />、また、Integrin beta1のノックアウトマウスやコンディショナルノックアウトマウスではリーラーフェノタイプにはならない<ref><pubmed>11516395</pubmed></ref><ref><pubmed>18077697</pubmed</ref>ことから、これらの働きは部分的である可能性が示唆されている。また、Dab1のチロシンリン酸化非依存的にDab1に結合する分子として、Notch<ref name="notch"><pubmed>18957219</pubmed></ref>、Dab2IP<ref><pubmed>12877983</pubmed></ref>、N-WASP<ref><pubmed>15361067</pubmed></ref>が知られている。特にNotchについては、その活性化型フォームを''reeler''に導入した場合に神経細胞の移動を完全にレスキューすることから、Reelin-Dab1シグナルにおいて何らかの重要な役割を果たしていることが考えられるが、その作用メカニズムは不明である<ref name="notch" />。  
<br>  Dab1が神経細胞移動を制御する分子メカニズムについてはチロシンリン酸化Dab1に結合する分子を中心に解析が進められて来ている。特に''crk''と''crkl''のダブルノックアウトマウス<ref name="crk" />と''c3g''のジーントラップ系統マウス<ref name="c3g" />でリーラーフェノタイプが観察されることから、その下流分子としてRap1が注目された。 Rap1はRasスーパーファミリーに属する低分子量Gタンパク質で、CadherinやIntegrinを介して細胞接着を制御する重要な分子であり、Reelinにより活性化することが以前に報告されている<ref name="crk" />。最近の報告により、Reelin-Dab1シグナルはCrk-C3G-Rap1経路を介して、ロコモーションの過程ではN-cadhrinを制御し<ref name="ncad1" /><ref name="ncad2" />、ターミナルトランスロケーションの過程ではIntegrin <span class="texhtml">α</span>5<span class="texhtml">β</span>1を介して神経細胞の移動過程をコントロールしていること<ref name="sekine2" />が示唆されている。Integrinを介した神経細胞移動に関しては、Integrin <span class="texhtml">α</span>3の関与も指摘されている<ref name="sanada" />。しかしながら、N-cadhelinを''reeler''マウスに導入しただけでは、神経細胞の移動がレスキューされないし<ref name="ncad1" />、また、Integrin b1のノックアウトマウスやコンディショナルノックアウトマウスではリーラーフェノタイプにはならない<ref><pubmed>11516395</pubmed></ref><ref><pubmed>18077697</pubmed</ref>ことから、これらの働きは部分的である可能性が示唆されている。また、Dab1のチロシンリン酸化非依存的にDab1に結合する分子として、Notch<ref name="notch"><pubmed>18957219</pubmed></ref>、Dab2IP<ref><pubmed>12877983</pubmed></ref>、N-WASP<ref><pubmed>15361067</pubmed></ref>が知られている。特にNotchについては、その活性化型フォームを''reeler''に導入した場合に神経細胞の移動を完全にレスキューすることから、Reelin-Dab1シグナルにおいて何らかの重要な役割を果たしていることが考えられるが、その作用メカニズムは不明である<ref name="notch" />。  


<br>  
<br>  
80

回編集

案内メニュー