「機能欠失実験」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
1行目: 1行目:
<br> 英:loss of function  
英語名:loss of function  


 ある遺伝子の機能を調べる際にその遺伝子の発現量や分子機能を減弱させることで機能を類推する実験手法。逆に遺伝子の機能や発現量を増強させる実験は[[機能獲得実験]]と呼ばれる。  
 ある遺伝子の機能を調べる際にその遺伝子の発現量や分子機能を減弱させることで機能を類推する実験手法。逆に遺伝子の機能や発現量を増強させる実験は[[機能獲得実験]]と呼ばれる。  
6行目: 6行目:


 ある遺伝子の生理機能を解析する際、動物個体や細胞でその遺伝子の機能を減弱させて得られた変化を基に機能を類推する実験手法を機能欠失実験という。 機能欠失実験には発現量の減少または分子機能を失わせる方法がある。  
 ある遺伝子の生理機能を解析する際、動物個体や細胞でその遺伝子の機能を減弱させて得られた変化を基に機能を類推する実験手法を機能欠失実験という。 機能欠失実験には発現量の減少または分子機能を失わせる方法がある。  
<br>


== 機能欠失実験の手法  ==
== 機能欠失実験の手法  ==
15行目: 13行目:
=== 遺伝子破壊(遺伝子ノックアウト)  ===
=== 遺伝子破壊(遺伝子ノックアウト)  ===


目的とする遺伝子そのものを破壊することで目的遺伝子の発現あるいは目的遺伝子の機能を完全に抑制させる。
 目的とする遺伝子そのものを破壊することで目的遺伝子の発現あるいは目的遺伝子の機能を完全に抑制させる。


==== ジーンターゲティングによる遺伝子ノックアウト  ====
==== ジーンターゲティングによる遺伝子ノックアウト  ====
22行目: 20行目:


==== 人工ヌクレアーゼによる遺伝子ノックアウト  ====
==== 人工ヌクレアーゼによる遺伝子ノックアウト  ====
[[Image:Takahirohirabayashi fig 1.jpg|thumb|right|300px|'''図1.人工ヌクレアーゼの構造''']]
[[Image:Takahirohirabayashi fig 2.jpg|thumb|right|300px|'''図2.人工ヌクレアーゼによる遺伝子破壊''']]


 人工ヌクレアーゼは、任意の塩基配列に結合するようにデザインされたDNA結合ドメインとDNA切断酵素の切断ドメインを連結させたタンパク質であり、任意の塩基配列を切断すること可能な酵素である(図1)。 [[Image:Takahirohirabayashi fig 1.jpg|thumb|right|300px|図1 人工ヌクレアーゼの構造]] この人工ヌクレアーゼにはDNA配列を認識し、切断するという原理は共通だが、ジンクフィンガーのDNA結合ドメインを利用してDNA配列を認識するZinc Finger nuclease (ZFN), TALEsのDNA結合ドメインを利用しDNA配列を認識するTALENの2種類が主に使用されている。これら人工ヌクレアーゼを導入した細胞内では特定のDNAがdouble-strand breakするが、これを修復するためにNHEJ (Non-Homologous End Joining)機構が働く。この際、高頻度で塩基対の欠失、挿入などの修復エラーが生じ、結果的にフレームシフトを起こすことで遺伝子がノックアウトされる(図2)。[[Image:Takahirohirabayashi fig 2.jpg|thumb|right|300px|図2 人工ヌクレアーゼによる遺伝子破壊]]この手法はES細胞を必要としないため、これまでES細胞が樹立されておらずジーンターゲティングによる遺伝子ノックアウトが不可能であった動物種でも使用例が報告されている。
 人工ヌクレアーゼは、任意の塩基配列に結合するようにデザインされたDNA結合ドメインとDNA切断酵素の切断ドメインを連結させたタンパク質であり、任意の塩基配列を切断すること可能な酵素である(図1)。この人工ヌクレアーゼにはDNA配列を認識し、切断するという原理は共通だが、ジンクフィンガーのDNA結合ドメインを利用してDNA配列を認識するZinc Finger nuclease (ZFN), TALEsのDNA結合ドメインを利用しDNA配列を認識するTALENの2種類が主に使用されている。これら人工ヌクレアーゼを導入した細胞内では特定のDNAがdouble-strand breakするが、これを修復するためにNHEJ (Non-Homologous End Joining)機構が働く。この際、高頻度で塩基対の欠失、挿入などの修復エラーが生じ、結果的にフレームシフトを起こすことで遺伝子がノックアウトされる(図2)。この手法はES細胞を必要としないため、これまでES細胞が樹立されておらずジーンターゲティングによる遺伝子ノックアウトが不可能であった動物種でも使用例が報告されている。
 
<br>


=== 遺伝子ノックダウン  ===
=== 遺伝子ノックダウン  ===
42行目: 40行目:


 RNA干渉とは21-23塩基からなる対からなるsiRNA(short interfering RNA)と呼ばれる2本鎖RNAが相補的な配列を持つ生体内のmRNAと結合し、そのmRNAを分解する現象である。 この現象はウイルスなどに対する生体防御機構と考えられているが、近年ではこの現象を利用して特定の遺伝子発現の抑制を誘導する実験系が種々の動植物で確立され、さらにこれらを応用した疾患に対する治療法が開発されている。siRNAそのものを細胞内へ導入し、遺伝子発現抑制を誘導するためには大量のsiRNAが必要であることやその効果が一過性であることから、近年ではこのsiRNAを発現するベクターとして導入する方法が多く用いられている。  
 RNA干渉とは21-23塩基からなる対からなるsiRNA(short interfering RNA)と呼ばれる2本鎖RNAが相補的な配列を持つ生体内のmRNAと結合し、そのmRNAを分解する現象である。 この現象はウイルスなどに対する生体防御機構と考えられているが、近年ではこの現象を利用して特定の遺伝子発現の抑制を誘導する実験系が種々の動植物で確立され、さらにこれらを応用した疾患に対する治療法が開発されている。siRNAそのものを細胞内へ導入し、遺伝子発現抑制を誘導するためには大量のsiRNAが必要であることやその効果が一過性であることから、近年ではこのsiRNAを発現するベクターとして導入する方法が多く用いられている。  
<br>


== 機能の減弱  ==
== 機能の減弱  ==


 機能を減弱させた変異体を発現することで内在性の正常遺伝子に対して優位に働き正常な機能を減弱させることができる。この変異をドミナントネガティブ体とよぶ。機能を減弱させる変異体には酵素活性部位などの機能ドメインを欠失させたものが使用される。また、目的のタンパク質が持つアミノ酸がリン酸化されることでその機能が増強する場合、そのアミノ酸をリン酸化を受けない他のアミノ酸に置換した変異体を発現することで目的タンパク質のリン酸化による機能の増強を抑制することができる。 一般的にはセリン, スレオニンはアラニン、チロシンはフェニルアラニン、のように類似構造のアミノ酸に置換する。
 機能を減弱させた変異体を発現することで内在性の正常遺伝子に対して優位に働き正常な機能を減弱させることができる。この変異をドミナントネガティブ体とよぶ。機能を減弱させる変異体には酵素活性部位などの機能ドメインを欠失させたものが使用される。また、目的のタンパク質が持つアミノ酸がリン酸化されることでその機能が増強する場合、そのアミノ酸をリン酸化を受けない他のアミノ酸に置換した変異体を発現することで目的タンパク質のリン酸化による機能の増強を抑制することができる。 一般的にはセリン, スレオニンはアラニン、チロシンはフェニルアラニン、のように類似構造のアミノ酸に置換する。


(執筆者:平林敬浩、八木健 担当編集委員:岡野栄之)
(執筆者:平林敬浩、八木健 担当編集委員:岡野栄之)

案内メニュー