「脂質ラフト」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
7行目: 7行目:
「脂質ラフトはステロールとスフィンゴ脂質に富んだ10-200 nmサイズの小さく不均一で非常に動的なドメインであり、細胞機能のコンパートメント化を担う。小さなラフトはタンパク質―タンパク質間またはタンパク質―脂質間の相互作用によって安定化し、大きなプラットフォームを形成することがある。」
「脂質ラフトはステロールとスフィンゴ脂質に富んだ10-200 nmサイズの小さく不均一で非常に動的なドメインであり、細胞機能のコンパートメント化を担う。小さなラフトはタンパク質―タンパク質間またはタンパク質―脂質間の相互作用によって安定化し、大きなプラットフォームを形成することがある。」


この定義ではラフトが小さく、短寿命で不安定であり、タンパク質の関与で安定化する可能性が述べられているが、ラフトが脂質だけで形成されるどうかについては触れられていない。この点は過去10年以上論争の的であり、いまだ完全な決着を見ていない。またラフト以外のメカニズムで(例えばステロールの関与を必要とせずに)できる脂質集合もある。このため本稿では、形成のメカニズムを問わず脂質の集合を「脂質ドメイン」と呼び、上記の定義に沿う脂質ドメインを「脂質ラフト」と呼んで区別する。
この定義ではラフトが小さく、短寿命で不安定であり、タンパク質の関与で安定化する可能性が述べられているが、ラフトが脂質だけで形成されるどうかについては触れられていない。この点は過去10年以上論争の的であり、いまだ完全な決着を見ていない。またラフト以外のメカニズムで(例えばステロールの関与を必要とせずに)できる脂質集合もある。このため本稿では、形成のメカニズムを問わず脂質の集合を「脂質ドメイン」と呼び、上記の定義に沿う脂質ドメインを「脂質ラフト」と呼んで区別する。


 以下では、まず人工膜において見出された脂質ドメインについて概説した後、細胞膜に同様のドメインが存在する可能性について論じる。特に、ラフト分子を直接可視化する試みと、それによりラフト仮説がどのように修正されつつあるかという点に重点を置いた。また最後に、ラフト局在分子と、関連する生命現象を取り上げ、脂質ラフトの機能的意義について論じる。
 以下では、まず人工膜において見出された脂質ドメインについて概説した後、細胞膜に同様のドメインが存在する可能性について論じる。特に、ラフト分子を直接可視化する試みと、それによりラフト仮説がどのように修正されつつあるかという点に重点を置いた。また最後に、ラフト局在分子と、関連する生命現象を取り上げ、脂質ラフトの機能的意義について論じる。
13行目: 13行目:
== 人工膜における脂質ドメイン ==
== 人工膜における脂質ドメイン ==


[[Image:conformation.png|thumb|300px|'''図1 脂肪酸鎖の立体配座'''<br>ミリスチン酸の全トランス型の立体配座(上)および1箇所のゴーシュ型立体配座を含む構造(下)。たった1箇所の回転で分子の形が大きく歪むことが分かる。Jmolにより描画。]]
[[Image:conformation.png|thumb|300px|'''図1.脂肪酸鎖の立体配座'''<br>ミリスチン酸の全トランス型の立体配座(上)および1箇所のゴーシュ型立体配座を含む構造(下)。たった1箇所の回転で分子の形が大きく歪むことが分かる。Jmolにより描画。]]
[[Image:phase_separation.png|thumb|350px|'''図2 相分離'''<br>スフィンゴ脂質と不飽和脂肪酸などから成る人工膜ではコレステロール依存的に相分離を生じる。]]
[[Image:phase_separation.png|thumb|300px|'''図2.相分離'''<br>スフィンゴ脂質と不飽和脂肪酸などから成る人工膜ではコレステロール依存的に相分離を生じる。]]
[[Image:Raft2.PNG|thumb|350px|'''図3 (A)スフィンゴ脂質の構造と(B)スフィンゴ脂質―コレステロール間相互作用を説明するumbrella model'''<br>Aの図では水素結合可能な部位(水色)と飽和脂肪酸鎖(ピンク)が強調してある。]]
[[Image:Raft2.PNG|thumb|300px|'''図3.(A)スフィンゴ脂質の構造と(B)スフィンゴ脂質―コレステロール間相互作用を説明するumbrella model'''<br>Aの図では水素結合可能な部位(水色)と飽和脂肪酸鎖(ピンク)が強調してある。]]


 細胞膜は数千種の脂質を含む複雑な系である。しかし個々の脂質を特異的に同定したり、細胞内含量や分布を人為的に操作するための一般的手法は確立されておらず、細胞膜における脂質の動態や機能を解析することは困難である。このため脂質2重膜の多くの性質は単純な組成から成る人工膜を用いて明らかにされてきた。脂質ラフトに関してはコレステロールを含む人工膜で見られる[[wikipedia:ja:液体秩序相|液体秩序相]](liquid-ordered; l<sub>o</sub>)との関連が注目されている。
 細胞膜は数千種の脂質を含む複雑な系である。しかし個々の脂質を特異的に同定したり、細胞内含量や分布を人為的に操作するための一般的手法は確立されておらず、細胞膜における脂質の動態や機能を解析することは困難である。このため脂質2重膜の多くの性質は単純な組成から成る人工膜を用いて明らかにされてきた。脂質ラフトに関してはコレステロールを含む人工膜で見られる[[wikipedia:ja:液体秩序相|液体秩序相]](liquid-ordered; l<sub>o</sub>)との関連が注目されている。


 [[wikipedia:ja:リポソーム|リポソーム]]のような人工膜において、脂質の脂肪酸鎖は低温下では全て[[wikipedia:ja:トランス型|トランス型]]の[[wikipedia:ja:立体配座|立体配座]]をとり伸びた状態にある(図1)。密なパッキングのため分子間には[[wikipedia:ja:ファンデルワールス力|ファンデルワールス力]]が強く働き、膜の流動性は妨げられている。一方、[[wikipedia:ja:相転移|相転移]]温度(Tm)以上では脂肪酸鎖が融解し、一部がトランス型から[[wikipedia:ja:ゴーシュ型|ゴーシュ型]]の立体配座へと変化する(液晶相)。この状態では、分子間相互作用が減弱するため脂質の運動性が高まる。ここにコレステロールが共存した場合、硬い平板構造をもつ[[ステロール骨格]]が脂肪酸鎖の間隙を埋め、トランス型の立体配座を安定化することによって秩序性が増す。一方、脂質の運動性はよく保たれており、拡散係数は液晶相に比較して2~3分の1程度減少するに過ぎない<ref><pubmed>15139814</pubmed></ref>。さらにコレステロールは飽和脂肪酸鎖のみから成る脂質と安定に相互作用するため、[[wikipedia:ja:飽和脂質|飽和脂質]]と[[wikipedia:ja:不飽和脂質|不飽和脂質]]、およびコレステロールの3者混合系では同一膜内で相分離を生じる。すなわち、飽和脂質とコレステロールから成る液体秩序相と、不飽和脂質が分布する[[wikipedia:ja:液体非秩序相|液体非秩序相]](liquid-disordered; l<sub>d</sub>)とが共存した状態になる(図2)。l<sub>o</sub>には直鎖状の飽和脂肪酸をもつ脂質が集積するため、周囲のl<sub>d</sub>相よりも膜が厚い特徴がある。
 [[wikipedia:ja:リポソーム|リポソーム]]のような人工膜において、脂質の脂肪酸鎖は低温下では全て[[wikipedia:ja:トランス型|トランス型]]の[[wikipedia:ja:立体配座|立体配座]]をとり伸びた状態にある(図1)。密なパッキングのため分子間には[[wikipedia:ja:ファンデルワールス力|ファンデルワールス力]]が強く働き、膜の流動性は妨げられている。一方、[[wikipedia:ja:相転移|相転移]]温度(Tm)以上では脂肪酸鎖が融解し、一部がトランス型から[[wikipedia:ja:ゴーシュ型|ゴーシュ型]]の立体配座へと変化する(液晶相)。この状態では、分子間相互作用が減弱するため脂質の運動性が高まる。ここにコレステロールが共存した場合、硬い平板構造をもつ[[ステロール骨格]]が脂肪酸鎖の間隙を埋め、トランス型の立体配座を安定化することによって秩序性が増す。一方、脂質の運動性はよく保たれており、拡散係数は液晶相に比較して2~3分の1程度減少するに過ぎない<ref><pubmed>15139814</pubmed></ref>。さらにコレステロールは飽和脂肪酸鎖のみから成る脂質と安定に相互作用するため、[[wikipedia:ja:飽和脂質|飽和脂質]]と[[wikipedia:ja:不飽和脂質|不飽和脂質]]、およびコレステロールの3者混合系では同一膜内で相分離を生じる。すなわち、飽和脂質とコレステロールから成る液体秩序相と、不飽和脂質が分布する[[wikipedia:ja:液体非秩序相|液体非秩序相]](liquid-disordered; l<sub>d</sub>)とが共存した状態になる(図2)。l<sub>o</sub>には直鎖状の飽和脂肪酸をもつ脂質が集積するため、周囲のl<sub>d</sub>相よりも膜が厚い特徴がある。


 動物細胞の細胞膜(形質膜)は、他のオルガネラとは異なり、30 mol%程度という多量のコレステロールを含有している。また動物細胞における主要な膜脂質である[[wikipedia:ja:グリセロリン脂質|グリセロリン脂質]]は不飽和脂肪酸を持つものが大半を占めるが、細胞膜に多いスフィンゴ脂質の構成脂肪酸の殆どは飽和脂肪酸である。これらの理由から、細胞膜のスフィンゴ脂質とコレステロールもl<sub>o</sub>相を形成する可能性がある。なおスフィンゴ脂質とコレステロールの集合ができるメカニズムについては、前述のモデル以外にスフィンゴシン骨格のアミド結合が分子間で水素結合をつくり安定化するモデルや、スフィンゴ脂質の嵩高い極性頭部の下の空隙をコレステロールが埋めるというumbrella model<ref><pubmed>10096908</pubmed></ref>が提唱されている(図3)。
 動物細胞の細胞膜(形質膜)は、他のオルガネラとは異なり、30 mol%程度という多量のコレステロールを含有している。また動物細胞における主要な膜脂質である[[wikipedia:ja:グリセロリン脂質|グリセロリン脂質]]は不飽和脂肪酸を持つものが大半を占めるが、細胞膜に多いスフィンゴ脂質の構成脂肪酸の殆どは飽和脂肪酸である。これらの理由から、細胞膜のスフィンゴ脂質とコレステロールもl<sub>o</sub>相を形成する可能性がある。なおスフィンゴ脂質とコレステロールの集合ができるメカニズムについては、前述のモデル以外にスフィンゴシン骨格のアミド結合が分子間で水素結合をつくり安定化するモデルや、スフィンゴ脂質の嵩高い極性頭部の下の空隙をコレステロールが埋めるというumbrella model<ref><pubmed>10096908</pubmed></ref>が提唱されている(図3)。


== 細胞膜における脂質ラフト ==
== 細胞膜における脂質ラフト ==
32行目: 32行目:


=== 顕微鏡による可視化 ===
=== 顕微鏡による可視化 ===
[[Image:Raft1.PNG|thumb|350px|'''図4 脂質ラフトの形成と安定化'''<br>非刺激状態の細胞のラフトは小さくかつ短寿命であり、何らかの刺激を受けることによって安定化すると考えられる。]]  
[[Image:Raft1.PNG|thumb|300px|'''図4.脂質ラフトの形成と安定化'''<br>非刺激状態の細胞のラフトは小さくかつ短寿命であり、何らかの刺激を受けることによって安定化すると考えられる。]]  
[[Image:Raft3.PNG|thumb|350px|'''図5 疎水性領域の長さに基づく脂質―タンパク質間相互作用'''<br>ある種の膜貫通タンパク質は膜貫通領域の長さゆえにl<sub>o</sub>選択的に局在し、また領域の境界付近に分布することで膜の厚さのミスマッチを軽減する可能性がある。]]  
[[Image:Raft3.PNG|thumb|300px|'''図5.疎水性領域の長さに基づく脂質―タンパク質間相互作用'''<br>ある種の膜貫通タンパク質は膜貫通領域の長さゆえにl<sub>o</sub>選択的に局在し、また領域の境界付近に分布することで膜の厚さのミスマッチを軽減する可能性がある。]]  


 人工膜のl<sub>o</sub>相はミクロンスケールのドメインとして観察されるのに対し、細胞膜では通常このような大きなラフトは観察されない。これはラフトの大きさが通常の[[wikipedia:ja:光学顕微鏡|光学顕微鏡]]の分解能の限界よりも小さいためと考えられる。しかし高分解能の可視化技術を用いることにより、直径10~200 nmの脂質ドメインが観察される。たとえば、[[超解像度光学顕微鏡]]のひとつ[[stimulated emission depletion (STED) microscopy]]を用いた解析では、スフィンゴ脂質やGPIアンカー型受容体が20 nmサイズの領域にごく短時間(&lt;10-20 ms)局在することが明らかになった<ref><pubmed>19098897</pubmed></ref>。また、楠見らは[[1粒子追跡法]](single particle tracking)によりGPIアンカー型受容体の動態を解析し、リガンドや抗体によって多量体化した場合に、[[受容体]]が50 nmサイズの領域に一過性(約0.5 s)にトラップされる現象を見出した。トラップが起きるためには細胞質側の[[チロシンリン酸化#.E9.9D.9E.E5.8F.97.E5.AE.B9.E4.BD.93.E5.9E.8B.E3.83.81.E3.83.AD.E3.82.B7.E3.83.B3.E3.82.AD.E3.83.8A.E3.83.BC.E3.82.BC|Lyn]]など[[エフェクター分子]]の活性化が必要であった<ref><pubmed>17517964</pubmed></ref>。こうした多くの報告を総合することで、非刺激状態の細胞のラフトは当初想定されていたよりも小さくかつ短寿命であり、何らかの刺激を受けることによって安定化されると考えられている(図4)。またラフトの形成には脂質の相分離のみならず、[[アクチン]]などのタンパク質と脂質の相互作用の関与が強く示唆されている。
 人工膜のl<sub>o</sub>相はミクロンスケールのドメインとして観察されるのに対し、細胞膜では通常このような大きなラフトは観察されない。これはラフトの大きさが通常の[[wikipedia:ja:光学顕微鏡|光学顕微鏡]]の分解能の限界よりも小さいためと考えられる。しかし高分解能の可視化技術を用いることにより、直径10~200 nmの脂質ドメインが観察される。たとえば、[[超解像度光学顕微鏡]]のひとつ[[stimulated emission depletion (STED) microscopy]]を用いた解析では、スフィンゴ脂質やGPIアンカー型受容体が20 nmサイズの領域にごく短時間(&lt;10-20 ms)局在することが明らかになった<ref><pubmed>19098897</pubmed></ref>。また、楠見らは[[1粒子追跡法]](single particle tracking)によりGPIアンカー型受容体の動態を解析し、リガンドや抗体によって多量体化した場合に、[[受容体]]が50 nmサイズの領域に一過性(約0.5 s)にトラップされる現象を見出した。トラップが起きるためには細胞質側の[[チロシンリン酸化#.E9.9D.9E.E5.8F.97.E5.AE.B9.E4.BD.93.E5.9E.8B.E3.83.81.E3.83.AD.E3.82.B7.E3.83.B3.E3.82.AD.E3.83.8A.E3.83.BC.E3.82.BC|Lyn]]など[[エフェクター分子]]の活性化が必要であった<ref><pubmed>17517964</pubmed></ref>。こうした多くの報告を総合することで、非刺激状態の細胞のラフトは当初想定されていたよりも小さくかつ短寿命であり、何らかの刺激を受けることによって安定化されると考えられている(図4)。またラフトの形成には脂質の相分離のみならず、[[アクチン]]などのタンパク質と脂質の相互作用の関与が強く示唆されている。


 人工膜のl<sub>o</sub>相と違って細胞膜のラフトが小さい理由については幾つかの考察がある。単純な2相系のリポソームでは、l<sub>o</sub>相は平衡状態では融合して大きな領域を作る。これはl<sub>o</sub>とl<sub>d</sub>の境界部で脂質鎖の長さにミスマッチを生じると、疎水部が親水性環境に露出してエネルギー的に不利であるため、境界/面積比が最小になるように融合が進むことによる。一方、細胞膜では膜タンパク質が脂質との相互作用によりラフト形成や安定化に寄与しうる。例えば、ある種の膜貫通タンパク質はl<sub>o</sub>とl<sub>d</sub>の界面に分布することで膜の厚さのミスマッチを軽減すると考えられる(図5)。また細胞膜では膜成分に絶え間ない出入がある。これらの要因を考慮すると、細胞膜でのラフトは数十nm程度のサイズで分散した状態が安定であるという定量的考察がなされている<ref><pubmed>16241845</pubmed></ref>。
 人工膜のl<sub>o</sub>相と違って細胞膜のラフトが小さい理由については幾つかの考察がある。単純な2相系のリポソームでは、l<sub>o</sub>相は平衡状態では融合して大きな領域を作る。これはl<sub>o</sub>とl<sub>d</sub>の境界部で脂質鎖の長さにミスマッチを生じると、疎水部が親水性環境に露出してエネルギー的に不利であるため、境界/面積比が最小になるように融合が進むことによる。一方、細胞膜では膜タンパク質が脂質との相互作用によりラフト形成や安定化に寄与しうる。例えば、ある種の膜貫通タンパク質はl<sub>o</sub>とl<sub>d</sub>の界面に分布することで膜の厚さのミスマッチを軽減すると考えられる(図5)。また細胞膜では膜成分に絶え間ない出入がある。これらの要因を考慮すると、細胞膜でのラフトは数十nm程度のサイズで分散した状態が安定であるという定量的考察がなされている<ref><pubmed>16241845</pubmed></ref>。


== ラフト局在と機能的意義 ==
== ラフト局在と機能的意義 ==
43行目: 43行目:
=== ラフト局在分子 ===
=== ラフト局在分子 ===


 ラフトと非ラフトとでは膜の脂質組成や物性(膜の厚さや膜内分子の拡散速度など)に違いがあるため、膜タンパク質はそれぞれの膜領域に対して異なる親和性を示す。ラフトに局在するタンパク質には次の2つのタイプが知られている。①脂質修飾を受けたタンパク質と②膜貫通領域(transmembrane domain; TMD)がラフトに親和性をもつタンパク質である。①に関係する脂質修飾には、アシル化([[ミリストイル化]]、[[パルミトイル化]])や[[GPIアンカー]]付加などがあり、反対に[[プレニル化]]([[ファルネシル化]]、[[ゲラニルゲラニル化]])を受けたタンパク質はラフトから排除される傾向があることが報告されている。一方、②については、特にTMDの長い膜タンパク質が疎水性部分の露出を避けるため、膜の厚いラフト環境を好むことが推測されている(図5)。実際、細胞膜に存在する膜タンパク質では、[[ゴルジ体]]にあるタンパク質よりもTMDが長い傾向がある<ref><pubmed>20603021</pubmed></ref>。
 ラフトと非ラフトとでは膜の脂質組成や物性(膜の厚さや膜内分子の拡散速度など)に違いがあるため、膜タンパク質はそれぞれの膜領域に対して異なる親和性を示す。ラフトに局在するタンパク質には次の2つのタイプが知られている。①脂質修飾を受けたタンパク質と②膜貫通領域(transmembrane domain; TMD)がラフトに親和性をもつタンパク質である。①に関係する脂質修飾には、アシル化([[ミリストイル化]]、[[パルミトイル化]])や[[GPIアンカー]]付加などがあり、反対に[[プレニル化]]([[ファルネシル化]]、[[ゲラニルゲラニル化]])を受けたタンパク質はラフトから排除される傾向があることが報告されている。一方、②については、特にTMDの長い膜タンパク質が疎水性部分の露出を避けるため、膜の厚いラフト環境を好むことが推測されている(図5)。実際、細胞膜に存在する膜タンパク質では、[[ゴルジ体]]にあるタンパク質よりもTMDが長い傾向がある<ref><pubmed>20603021</pubmed></ref>。


=== 脂質ラフトの機能 ===
=== 脂質ラフトの機能 ===
56行目: 56行目:


<references />  
<references />  


(執筆者:高鳥翔、藤本豊士 担当編集委員:河西春郎)
(執筆者:高鳥翔、藤本豊士 担当編集委員:河西春郎)

案内メニュー