「血液脳関門」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
2行目: 2行目:


血液脳関門(Blood-brain barrier, BBB)の解剖学的実体は脳毛細血管であり、脳室周囲器官を除いては、内皮細胞同士が密着結合で連結している。当初BBBは、この構造的特徴によって、細胞間隙を介した非特異的な中枢への侵入や、脳内産生物質の流出を阻止している物理的障壁と考えられてきた。しかし現在では、BBBは脳に必要な物質を血液中から選択して脳へ供給し、逆に脳内で産生された不要物質を血中に排出する「動的インターフェース」であるという新たな概念が確立している。BBBには、多様なトランスポーターや受容体が内皮細胞の脳血液側と脳側の細胞膜に極性をもって発現し、協奏的に働くことによって、循環血液と脳実質間でのベクトル輸送を厳密に制御している。中枢作用薬の開発には、良好な脳移行性を持った候補化合物の選択が必要であり、ヒトBBBの解明が不可欠である。近年、「機能タンパク質の絶対定量法(Quantitative Targeted Absolute Proteomics (QTAP)」によって、ヒト、サル、マウスのBBBにおけるトランスポーター・受容体の質的及び量的な種差が解明された。BBB研究は、げっ歯類を中心とした発現の有無、BBBを透過するか否かといった定性的解析から、発現量、透過速度、輸送速度およびヒト-動物間の種差や正常-病態間の差などに基づく定量的解析へと大きく舵を切りつつある。  
血液脳関門(Blood-brain barrier, BBB)の解剖学的実体は脳毛細血管であり、脳室周囲器官を除いては、内皮細胞同士が密着結合で連結している。当初BBBは、この構造的特徴によって、細胞間隙を介した非特異的な中枢への侵入や、脳内産生物質の流出を阻止している物理的障壁と考えられてきた。しかし現在では、BBBは脳に必要な物質を血液中から選択して脳へ供給し、逆に脳内で産生された不要物質を血中に排出する「動的インターフェース」であるという新たな概念が確立している。BBBには、多様なトランスポーターや受容体が内皮細胞の脳血液側と脳側の細胞膜に極性をもって発現し、協奏的に働くことによって、循環血液と脳実質間でのベクトル輸送を厳密に制御している。中枢作用薬の開発には、良好な脳移行性を持った候補化合物の選択が必要であり、ヒトBBBの解明が不可欠である。近年、「機能タンパク質の絶対定量法(Quantitative Targeted Absolute Proteomics (QTAP)」によって、ヒト、サル、マウスのBBBにおけるトランスポーター・受容体の質的及び量的な種差が解明された。BBB研究は、げっ歯類を中心とした発現の有無、BBBを透過するか否かといった定性的解析から、発現量、透過速度、輸送速度およびヒト-動物間の種差や正常-病態間の差などに基づく定量的解析へと大きく舵を切りつつある。  
<br>


== 歴史  ==
== 歴史  ==
12行目: 10行目:


脳は、高度な神経活動のためシナプス周辺の環境が、BBBによって厳密に制御されている。BBBの解剖学的実体は脳毛細血管であり、内皮細胞同士が密着結合(tight junction)で連結している (図1)。密着結合構成タンパク質には、クローディン、オクルディンなどが知られている。一部の内皮細胞には、周皮細胞pericyteが接着し、その大部分を星状膠細胞の足突起が覆っている (図1)。このようなBBBの構造的特徴によって、血液構成成分や投与薬物の内皮細胞間隙を介した非特異的な中枢への侵入や、脳内産生物質の流出を阻止している。ただし例外的として、終校器官、脳弓下器官、交連下器官、視床下部正中隆起、松果体、下垂体後葉、最終野では、毛細血管内皮細胞が密着結合で連結していないため、末梢血管と同様に血液とこれらの組織間の物質の移動は比較的自由である。これは、ゴールドマンがトリパンブルーを血管内に投与した実験において、一部の脳内部位が染色された要因であった可能性が高い。ヒトの脳毛細血管の全長は約650 km、表面積は約9m2である一方、全脳に占める脳毛細血管内皮細胞の容積はわずか0.1%である。脳の毛細血管は平均40 µmの間隔で網目状に張り巡らされていることから、分子量数百程度の物質は脳毛細血管を通過後、速やかに拡散して、脳実質細胞に到達可能である。血液と脳実質細胞間液の物質交換は、様々な輸送システムによって制御されている (図2)。この輸送系の分子的実体は、多様なトランスポーターや受容体、及びその複合体であり、脳毛細血管内皮細胞の脳血液側と脳側の細胞膜に極性をもって発現する。トランスポーターは、脳血液側と脳側の細胞膜のどちらか一方又は、両方の細胞膜に局在し、細胞外から細胞内、又は細胞内から細胞外へ、特定の基質を輸送する能力を有している。トランスポーターは、大きく2つのファミリーに分類される。1つは、ATP-binding cassette (ABC) transporterファミリーで、ATPの加水分解エネルギーを直接利用して、主に細胞内から細胞外への輸送を担う。 もう1つは、solute carrier (SLC)ファミリーで、エネルギーを消費しないで濃度勾配に従って下り坂輸送を行う促進拡散や、無機イオンや有機イオンの濃度勾配を利用して、濃度勾配に逆らった基質輸送を行う2次性能動輸送に関与する。受容体はトランスサイトーシスによって、リガンドを輸送する機能を有している。これらのトランスポーターや受容体が協同的に働くことによって、循環血液から脳への供給方向及び、脳から循環血液への排出方向の物質のベクトル輸送を厳密に制御している。  
脳は、高度な神経活動のためシナプス周辺の環境が、BBBによって厳密に制御されている。BBBの解剖学的実体は脳毛細血管であり、内皮細胞同士が密着結合(tight junction)で連結している (図1)。密着結合構成タンパク質には、クローディン、オクルディンなどが知られている。一部の内皮細胞には、周皮細胞pericyteが接着し、その大部分を星状膠細胞の足突起が覆っている (図1)。このようなBBBの構造的特徴によって、血液構成成分や投与薬物の内皮細胞間隙を介した非特異的な中枢への侵入や、脳内産生物質の流出を阻止している。ただし例外的として、終校器官、脳弓下器官、交連下器官、視床下部正中隆起、松果体、下垂体後葉、最終野では、毛細血管内皮細胞が密着結合で連結していないため、末梢血管と同様に血液とこれらの組織間の物質の移動は比較的自由である。これは、ゴールドマンがトリパンブルーを血管内に投与した実験において、一部の脳内部位が染色された要因であった可能性が高い。ヒトの脳毛細血管の全長は約650 km、表面積は約9m2である一方、全脳に占める脳毛細血管内皮細胞の容積はわずか0.1%である。脳の毛細血管は平均40 µmの間隔で網目状に張り巡らされていることから、分子量数百程度の物質は脳毛細血管を通過後、速やかに拡散して、脳実質細胞に到達可能である。血液と脳実質細胞間液の物質交換は、様々な輸送システムによって制御されている (図2)。この輸送系の分子的実体は、多様なトランスポーターや受容体、及びその複合体であり、脳毛細血管内皮細胞の脳血液側と脳側の細胞膜に極性をもって発現する。トランスポーターは、脳血液側と脳側の細胞膜のどちらか一方又は、両方の細胞膜に局在し、細胞外から細胞内、又は細胞内から細胞外へ、特定の基質を輸送する能力を有している。トランスポーターは、大きく2つのファミリーに分類される。1つは、ATP-binding cassette (ABC) transporterファミリーで、ATPの加水分解エネルギーを直接利用して、主に細胞内から細胞外への輸送を担う。 もう1つは、solute carrier (SLC)ファミリーで、エネルギーを消費しないで濃度勾配に従って下り坂輸送を行う促進拡散や、無機イオンや有機イオンの濃度勾配を利用して、濃度勾配に逆らった基質輸送を行う2次性能動輸送に関与する。受容体はトランスサイトーシスによって、リガンドを輸送する機能を有している。これらのトランスポーターや受容体が協同的に働くことによって、循環血液から脳への供給方向及び、脳から循環血液への排出方向の物質のベクトル輸送を厳密に制御している。  
[[ファイル:Tachikawa_fig_1.jpg|200px|thumb|血液脳関門(Blood-brain barrier, BBB)の解剖学的実体]]


== 内因性物質の輸送システム  ==
== 内因性物質の輸送システム  ==
93

回編集

案内メニュー