「血液脳関門」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
39行目: 39行目:
=== 研究動向  ===
=== 研究動向  ===


[[Image:Tachikawa fig 4.jpg|thumb|400px|図4 血液脳関門における輸送担体のタンパク質発現量の種差  A. ヒトBBBとddyマウスBBBにおけるタンパク質発現量の比較。B. ヒトBBBとカニクイザルBBBにおけるタンパク質発現量の比較。タンパク質発現量は、mean ±S.D.でプロットした。赤字, 薬物トランスポーター; 青, 内因性物質のトランスポーター; 緑, その他。 <ref name="ref2" /><ref name="ref4"><pubmed> 22401960 </pubmed></ref><ref name="ref5"><pubmed> 21254069 </pubmed></ref><ref name="ref6"><pubmed> 21291474 </pubmed></ref>のデータを基に作成)]]
[[Image:Tachikawa fig 4.jpg|thumb|400px|図4 血液脳関門における輸送担体のタンパク質発現量の種差  A. ヒトBBBとddyマウスBBBにおけるタンパク質発現量の比較。B. ヒトBBBとカニクイザルBBBにおけるタンパク質発現量の比較。タンパク質発現量は、mean ±S.D.でプロットした。赤字, 薬物トランスポーター; 青, 内因性物質のトランスポーター; 緑, その他。 <ref name="ref2" /><ref name="ref4"><ref name="ref5"><pubmed> 21254069 </pubmed></ref><ref name="ref6"><pubmed> 21291474 </pubmed></ref>のデータを基に作成)]]


PET, SPECTおよびMRIなどのイメージング技術を利用することによって、ヒトのBBBにおける物質の透過速度やトランスポーターの輸送活性が測定され、ヒトと実験動物の間の違いが定量的に解析されている。合成可能なリガンド数が少ないこと、特定のトランスポーターだけに輸送される物質がほとんどないことから、現在、一部の化合物やトランスポーターを対象とした解析に限られている。一方、寺崎らが開発した「機能性分子のタンパク質絶対定量法(Quantitative Targeted Absolute Proteomics (QTAP)」によって、ヒト、サル、マウスのBBBにおける複数のトランスポーターのタンパク質発現量が解明された(図4)<ref name="ref2" /><ref name="ref4" /><ref name="ref5" /><ref name="ref6" />。これら2つの手法によって、ヒト血液脳関門研究およびヒト-動物間の種差研究は、発現の有無、BBBを透過する・しないなどといった定性的解析から、発現量(mol)、透過速度、輸送速度およびその差などに基づく定量的解析へと大きく舵を切りつつある。  
PET, SPECTおよびMRIなどのイメージング技術を利用することによって、ヒトのBBBにおける物質の透過速度やトランスポーターの輸送活性が測定され、ヒトと実験動物の間の違いが定量的に解析されている。合成可能なリガンド数が少ないこと、特定のトランスポーターだけに輸送される物質がほとんどないことから、現在、一部の化合物やトランスポーターを対象とした解析に限られている。一方、寺崎らが開発した「機能性分子のタンパク質絶対定量法(Quantitative Targeted Absolute Proteomics (QTAP)」によって、ヒト、サル、マウスのBBBにおける複数のトランスポーターのタンパク質発現量が解明された(図4)<ref name="ref2" /><ref name="ref4" /><ref name="ref5" /><ref name="ref6" />。これら2つの手法によって、ヒト血液脳関門研究およびヒト-動物間の種差研究は、発現の有無、BBBを透過する・しないなどといった定性的解析から、発現量(mol)、透過速度、輸送速度およびその差などに基づく定量的解析へと大きく舵を切りつつある。  
93

回編集

案内メニュー