「血液脳関門」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
5行目: 5行目:
== 歴史  ==
== 歴史  ==


細菌学者Paul Ehrlichは当時流行り始めた生体染色色素に興味を持ち、生きたウサギの血管内に色素を注射したところ、多くの臓器の組織染色に成功したが、中枢だけが染色できないことに気付いた。1885年に、この結果を「脳組織は染色色素を吸着する化学成分が欠乏している」と解釈した論文を発表した<ref>'''Ehrlich P.'''<br>Das Sauerstoff-Bedurfnis des Organismus: eine farbenanalytisch Studie<br>''Berlin: Hirschward'':1885</ref>。その後、弟子のEdwin Goldmanが、トリパンブルー(酸性色素)を脳室内に投与したところ、中枢組織は染まるが他の末梢臓器は染まらないことを見出した。Goldmanは、この結果を「中枢組織は染色し難い性質を持つという解釈は誤りで、脳は血管との間に色素を隔離する特性を有している」と解釈し、1913年に” Blut-Gehirn-Schranke”仮説を提唱した<ref>'''Goldman E.E.'''<br>Vitalfarbung am Zentralnervensystem<br>''Berlin: Eimer'':1993</ref>。この史実に基づき、「血液脳関門(Blood-Brain Barrier, BBB)の概念の提唱者はPaul Ehrlichである」と多くの教科書に書かれている。一方、Ridleyは、Ehrlichの実験から190年も遡った1695年に著書'The Anatomy of the Brain<ref>Ridley H.'''<br>The Anatomy of the Brain<br>''London: Printers to the Royal Society'':1695</ref>'を発表し、その中で「水銀を血液内に投与すると、神経組織へ移行せずに血管内に留まっている。その原因は脳血管の密着性が、他の血管と大きく異なるからである。」と述べている。この歴史的発見を無視する訳にはいかない。「血液脳関門の最初の発見は、1695年、英国人の生理学者Humphrey Ridleyである」<ref><pubmed> 21349150 </pubmed></ref>という説に教科書を訂正する必要がある。このように320年前に英国で始まった血液脳関門の研究は、当初、「血液と脳を隔てる単なる物理的障壁」と考えられてきた。
細菌学者Paul Ehrlichは当時流行り始めた生体染色色素に興味を持ち、生きたウサギの血管内に色素を注射したところ、多くの臓器の組織染色に成功したが、中枢だけが染色できないことに気付いた。1885年に、この結果を「脳組織は染色色素を吸着する化学成分が欠乏している」と解釈した論文を発表した<ref>'''Ehrlich P.'''<br>Das Sauerstoff-Bedurfnis des Organismus: eine farbenanalytisch Studie<br>''Berlin: Hirschward'':1885</ref>。その後、弟子のEdwin Goldmanが、トリパンブルー(酸性色素)を脳室内に投与したところ、中枢組織は染まるが他の末梢臓器は染まらないことを見出した。Goldmanは、この結果を「中枢組織は染色し難い性質を持つという解釈は誤りで、脳は血管との間に色素を隔離する特性を有している」と解釈し、1913年に” Blut-Gehirn-Schranke”仮説を提唱した<ref>'''Goldman E.E.'''<br>Vitalfarbung am Zentralnervensystem<br>''Berlin: Eimer'':1993</ref>。この史実に基づき、「血液脳関門(Blood-Brain Barrier, BBB)の概念の提唱者はPaul Ehrlichである」と多くの教科書に書かれている。一方、Ridleyは、Ehrlichの実験から190年も遡った1695年に著書'The Anatomy of the Brain<ref>Ridley H.'''<br>The Anatomy of the Brain<br>''London: Printers to the Royal Society'':1695</ref>'を発表し、その中で「水銀を血液内に投与すると、神経組織へ移行せずに血管内に留まっている。その原因は脳血管の密着性が、他の血管と大きく異なるからである。」と述べている。この歴史的発見を無視する訳にはいかない。「血液脳関門の最初の発見は、1695年、英国人の生理学者Humphrey Ridleyである」<ref><pubmed> 21349150 </pubmed></ref>という説に教科書を訂正する必要がある。このように320年前に英国で始まった血液脳関門の研究は、当初、「血液と脳を隔てる単なる物理的障壁」と考えられてきた。  


しかし近年では、分子生物学や、''in vitro''モデル細胞株の樹立など細胞生物的な手法の導入によって、BBBの機能は分子レベルでの解明が飛躍的に進んでいる。現在では、BBBは脳に必要な物質を血液中から選択して脳へ供給し、逆に脳内で産生された不要物質を血中に排出する「動的インターフェース」であるという新たな概念へと塗り替えられている<ref name="ref1"><pubmed> 17619998 </pubmed></ref>。このBBBの機能は、薬という異物の脳移行を制限することから、中枢作用薬の開発成功率を大幅に下げる一因と位置づけられている。特に、がん細胞において抗がん剤耐性因子として同定されたP-糖タンパク(P-glycoprotein/ P-gp/ ABCB1/MDR1/mdr1a)が、「脳血管内皮細胞でエネルギーを消費して薬物を排出するポンプとして働いていること」を見出し、それまでの「400Daの分子篩説」<ref><pubmed> 7392035 </pubmed></ref>あるいは600Daの分子篩説」<ref><pubmed> 7765071 </pubmed></ref>に対して「能動的排出輸送担体説」<ref><pubmed> 1357522 </pubmed></ref>を提唱したことは、血液脳関門研究の歴史において重要な意義がある。その後、mdr1a knockout mouseを用いた研究によって<ref><pubmed> 7910522 </pubmed></ref>その排出輸送機能の生理的な重要性や薬物動態における重要性が明らかになった。その後、mdr1a以外にBreast Cancer Resistance Protein (BCRP/ABCG2/MXR/ABCP)<ref><pubmed> 15805252 </pubmed></ref><ref><pubmed> 12438926 </pubmed></ref><ref><pubmed> 15255930 </pubmed></ref><ref><pubmed> 16181433 </pubmed></ref>やMultidrug Resistance-associated Protein 4 (MRP4/ABCC4)<ref><pubmed> 15218051 </pubmed></ref><ref><pubmed> 19029202 </pubmed></ref><ref><pubmed> 20194529 </pubmed></ref>が、薬物や内因性物質などの排出ポンプとして重要な働きを担っていることが明らかになった。BBBに発現して物質輸送を担う多様なトランスポーターや受容体の分子レベルでの同定が進み、脳機能を支援・防御する動的インターフェースの一躍を担っていることが明らかにされ<ref name="ref1" />、BBBの受容体を標的とした薬物送達システムの開発も進んだ<ref><pubmed> 22929442 </pubmed></ref>。そして今、寺崎らが2008年に開発した機能性タンパク質の標的絶対定量法(Quantitative Targeted Absolute Proteomics (QTAP)」<ref name="ref2"><pubmed> 18219561 </pubmed></ref>によって、BBBに発現するトランスポーターの定量アトラスが、マウス<ref name="ref2" /><ref name="ref4"><pubmed> 22401960 </pubmed></ref>、サル<ref name="ref5"><pubmed> 21254069 </pubmed></ref>、ヒト<ref name="ref6"><pubmed> 21291474 </pubmed></ref>で完成し、これらの定量情報を基にBBBのヒトと動物との種差が解明された。さらに、BBBにおけるトランスポーターの発現量と''in vitro''で計測可能な単分子活性を基にしたBBB物質輸送の再構築法<ref name="ref8"><pubmed> 21828264 </pubmed></ref>の開発が進んでおり、ヒトBBBにおける薬物を含めた物質輸送の予測系の基盤技術が構築されつつある。  
しかし近年では、分子生物学や、''in vitro''モデル細胞株の樹立など細胞生物的な手法の導入によって、BBBの機能は分子レベルでの解明が飛躍的に進んでいる。現在では、BBBは脳に必要な物質を血液中から選択して脳へ供給し、逆に脳内で産生された不要物質を血中に排出する「動的インターフェース」であるという新たな概念へと塗り替えられている<ref name="ref1"><pubmed> 17619998 </pubmed></ref>。このBBBの機能は、薬という異物の脳移行を制限することから、中枢作用薬の開発成功率を大幅に下げる一因と位置づけられている。特に、がん細胞において抗がん剤耐性因子として同定されたP-糖タンパク(P-glycoprotein/ P-gp/ ABCB1/MDR1/mdr1a)が、「脳血管内皮細胞でエネルギーを消費して薬物を排出するポンプとして働いていること」を見出し、それまでの「400Daの分子篩説」<ref><pubmed> 7392035 </pubmed></ref>あるいは600Daの分子篩説」<ref><pubmed> 7765071 </pubmed></ref>に対して「能動的排出輸送担体説」<ref><pubmed> 1357522 </pubmed></ref>を提唱したことは、血液脳関門研究の歴史において重要な意義がある。その後、mdr1a knockout mouseを用いた研究によって<ref><pubmed> 7910522 </pubmed></ref>その排出輸送機能の生理的な重要性や薬物動態における重要性が明らかになった。その後、mdr1a以外にBreast Cancer Resistance Protein (BCRP/ABCG2/MXR/ABCP)<ref><pubmed> 15805252 </pubmed></ref><ref><pubmed> 12438926 </pubmed></ref><ref><pubmed> 15255930 </pubmed></ref><ref><pubmed> 16181433 </pubmed></ref>やMultidrug Resistance-associated Protein 4 (MRP4/ABCC4)<ref><pubmed> 15218051 </pubmed></ref><ref><pubmed> 19029202 </pubmed></ref><ref><pubmed> 20194529 </pubmed></ref>が、薬物や内因性物質などの排出ポンプとして重要な働きを担っていることが明らかになった。BBBに発現して物質輸送を担う多様なトランスポーターや受容体の分子レベルでの同定が進み、脳機能を支援・防御する動的インターフェースの一躍を担っていることが明らかにされ<ref name="ref1" />、BBBの受容体を標的とした薬物送達システムの開発も進んだ<ref><pubmed> 22929442 </pubmed></ref>。そして今、寺崎らが2008年に開発した機能性タンパク質の標的絶対定量法(Quantitative Targeted Absolute Proteomics (QTAP)」<ref name="ref2"><pubmed> 18219561 </pubmed></ref>によって、BBBに発現するトランスポーターの定量アトラスが、マウス<ref name="ref2" /><ref name="ref4"><pubmed> 22401960 </pubmed></ref>、サル<ref name="ref5"><pubmed> 21254069 </pubmed></ref>、ヒト<ref name="ref6"><pubmed> 21291474 </pubmed></ref>で完成し、これらの定量情報を基にBBBのヒトと動物との種差が解明された。さらに、BBBにおけるトランスポーターの発現量と''in vitro''で計測可能な単分子活性を基にしたBBB物質輸送の再構築法<ref name="ref8"><pubmed> 21828264 </pubmed></ref>の開発が進んでおり、ヒトBBBにおける薬物を含めた物質輸送の予測系の基盤技術が構築されつつある。  
33行目: 33行目:
表1に、BBB研究で用いられる実験手法をまとめた。BBBにおける輸送システムを解明する研究は、functional genomicsを背景に、多様な実験手法が開発されたことで飛躍的に進んだ。主な研究手法は、以下の様に大別される。詳細は、総説<ref>'''寺崎哲也,大槻純男,上家潤一'''<br>3. 薬効組織(脳、腫瘍)への輸送特性の評価 1) 血液脳関門の透過性の評価 7:170-177 遺伝子医学MOOK 最新創薬学2007, <br>''メディカル ドゥ'':2007</ref>を参照されたい。  
表1に、BBB研究で用いられる実験手法をまとめた。BBBにおける輸送システムを解明する研究は、functional genomicsを背景に、多様な実験手法が開発されたことで飛躍的に進んだ。主な研究手法は、以下の様に大別される。詳細は、総説<ref>'''寺崎哲也,大槻純男,上家潤一'''<br>3. 薬効組織(脳、腫瘍)への輸送特性の評価 1) 血液脳関門の透過性の評価 7:170-177 遺伝子医学MOOK 最新創薬学2007, <br>''メディカル ドゥ'':2007</ref>を参照されたい。  


(1) 主にげっ歯類で開発された''in vivo''解析系を用いて、循環血液から脳方向及び脳から循環血液方向の物質輸送を速度論的に解析する方法。 (2) 単離脳毛細血管や''in vitro'' BBBモデルとして脳毛細血管内皮細胞株を樹立して、詳細な輸送特性(基質の親和性、駆動力、基質選択性)を解析し、トランスポーターを同定する方法。既知のトランスポーターの特性と一致しない場合は、遺伝子クローニングを行う方法。(3) トランスポーター発現系を用いて、''in vivo''解析系や''in vitro''解析で得られた輸送特性と一致することを実証する方法。新たなトランスポーター輸送機能の解明のために、新規基質をスクリーニングする方法。 (4) RT-PCR法やin situ hybridization法を用いたmRNAレベルか、抗体を用いたウエスタンブロット法及び免疫染色法を用いたタンパク質レベルでの発現局在解析。 (5) QTAPの手法を用いて、BBBトランスポーターの定量的アトラスを作成する。絶対定量値と単分子活性を基に、ヒト''in vivo'' BBBにおける物質透過速度を予測する方法 (後述)。  
(1) 主にげっ歯類で開発された''in vivo''解析系を用いて、循環血液から脳方向及び脳から循環血液方向の物質輸送を速度論的に解析する方法。 (2) 単離脳毛細血管や''in vitro'' BBBモデルとして脳毛細血管内皮細胞株を樹立して、詳細な輸送特性(基質の親和性、駆動力、基質選択性)を解析し、トランスポーターを同定する方法。既知のトランスポーターの特性と一致しない場合は、遺伝子クローニングを行う方法。(3) トランスポーター発現系を用いて、''in vivo''解析系や''in vitro''解析で得られた輸送特性と一致することを実証する方法。新たなトランスポーター輸送機能の解明のために、新規基質をスクリーニングする方法。 (4) RT-PCR法や''in situ ''hybridization法を用いたmRNAレベルか、抗体を用いたウエスタンブロット法及び免疫染色法を用いたタンパク質レベルでの発現局在解析。 (5) QTAPの手法を用いて、BBBトランスポーターの定量的アトラスを作成する。絶対定量値と単分子活性を基に、ヒト''in vivo'' BBBにおける物質透過速度を予測する方法 (後述)。


== 動物種差  ==
== 動物種差  ==
39行目: 39行目:
=== 研究動向  ===
=== 研究動向  ===


[[Image:Tachikawa fig 4.jpg|thumb|400px|図4 血液脳関門における輸送担体のタンパク質発現量の種差  A. ヒトBBBとddyマウスBBBにおけるタンパク質発現量の比較。B. ヒトBBBとカニクイザルBBBにおけるタンパク質発現量の比較。タンパク質発現量は、mean ±S.D.でプロットした。赤字, 薬物トランスポーター; 青, 内因性物質のトランスポーター; 緑, その他。 <ref name="ref2" /><ref name="ref5" /><ref name="ref6"/>のデータを基に作成)]]
[[Image:Tachikawa fig 4.jpg|thumb|400px|図4 血液脳関門における輸送担体のタンパク質発現量の種差  A. ヒトBBBとddyマウスBBBにおけるタンパク質発現量の比較。B. ヒトBBBとカニクイザルBBBにおけるタンパク質発現量の比較。タンパク質発現量は、mean ±S.D.でプロットした。赤字, 薬物トランスポーター; 青, 内因性物質のトランスポーター; 緑, その他。 <ref name="ref2" /><ref name="ref5" /><ref name="ref6"/>のデータを基に作成)]]  


PET, SPECTおよびMRIなどのイメージング技術を利用することによって、ヒトのBBBにおける物質の透過速度やトランスポーターの輸送活性が測定され、ヒトと実験動物の間の違いが定量的に解析されている。合成可能なリガンド数が少ないこと、特定のトランスポーターだけに輸送される物質がほとんどないことから、現在、一部の化合物やトランスポーターを対象とした解析に限られている。一方、寺崎らが開発した「機能性分子のタンパク質絶対定量法(Quantitative Targeted Absolute Proteomics (QTAP)」によって、ヒト、サル、マウスのBBBにおける複数のトランスポーターのタンパク質発現量が解明された(図4)<ref name="ref2" /><ref name="ref4" /><ref name="ref5" /><ref name="ref6" />。これら2つの手法によって、ヒト血液脳関門研究およびヒト-動物間の種差研究は、発現の有無、BBBを透過する・しないなどといった定性的解析から、発現量(mol)、透過速度、輸送速度およびその差などに基づく定量的解析へと大きく舵を切りつつある。  
PET, SPECTおよびMRIなどのイメージング技術を利用することによって、ヒトのBBBにおける物質の透過速度やトランスポーターの輸送活性が測定され、ヒトと実験動物の間の違いが定量的に解析されている。合成可能なリガンド数が少ないこと、特定のトランスポーターだけに輸送される物質がほとんどないことから、現在、一部の化合物やトランスポーターを対象とした解析に限られている。一方、寺崎らが開発した「機能性分子のタンパク質絶対定量法(Quantitative Targeted Absolute Proteomics (QTAP)」によって、ヒト、サル、マウスのBBBにおける複数のトランスポーターのタンパク質発現量が解明された(図4)<ref name="ref2" /><ref name="ref4" /><ref name="ref5" /><ref name="ref6" />。これら2つの手法によって、ヒト血液脳関門研究およびヒト-動物間の種差研究は、発現の有無、BBBを透過する・しないなどといった定性的解析から、発現量(mol)、透過速度、輸送速度およびその差などに基づく定量的解析へと大きく舵を切りつつある。  
93

回編集

案内メニュー