「物体探索」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
1行目: 1行目:
[[RTENOTITLE]]英:Object exploration  
英語名:object exploration  


 動物は環境を自発的に探索することにより、環境内にある物体そのものの情報や複数の物体の配置に関する知識を獲得し、環境の変化を察知することができる。物体探索行動に関わる物体の認知や空間および環境の認知は、異なる神経基盤によって支えられていることが、損傷研究や薬理学的研究から明らかになっている。  
 動物は環境を自発的に探索することにより、環境内にある物体そのものの情報や複数の物体の配置に関する知識を獲得し、環境の変化を察知することができる。物体探索行動に関わる物体の認知や空間および環境の認知は、異なる神経基盤によって支えられていることが、損傷研究や薬理学的研究から明らかになっている。  
17行目: 17行目:
=== 物体探索行動に影響する要因  ===
=== 物体探索行動に影響する要因  ===


==== 物体の変化 [[Image:Uekita Ob Fig.1.jpg|right|250px|図1 物体認知を調べる課題]]  ====
==== 物体の変化 ====


 動物に二つの同じ物体を探索させた後、ひとつの物体を新しい物体に置き換えると、正常な動物は新奇物体を優先して長時間探索する<ref name="Enna" /><ref name="Dix"><pubmed>10512585</pubmed></ref> 。Ennaceur&nbsp;&amp; Delacour (1988)<ref name="Enna" /> は45 cm x 65cmで高さ45 cmの壁のある実験アリーナに、2つの同じ物体を置き、これをラットに数分間探索させた(見本段階)。一旦、ラットを広場から出して遅延をおき、再度、動物を2つの物体のある広場に戻し探索させた(テスト段階)。一方は遅延前に提示した物体と同じ物体(馴染物体)で、他方は異なる物体(新奇物体)である(図1)。新奇物体の探索時間が馴染物体の探索時間より長ければ、動物が以前に探索した物体を認知したと結論できる。脳損傷や薬物投与によって馴染物体と新奇物体の探索時間に違いが見られなくなった場合、物体認知の障害が生じていると解釈できる。また、遅延時間に依存して障害が生じる場合には、作業記憶障害が生じている可能性を検討すべきである。この課題は課題のルールに関する学習が必要でないため、参照記憶障害の可能性は除外できるだろう。
[[Image:Uekita Ob Fig.1.jpg|thumb|350px|'''図1.物体認知を調べる課題''']]


==== 位置の変化[[Image:Uekita Ob Fig.2.jpg|right|250px|図2 位置(場所)認知を調べる課題]]  ====
 動物に二つの同じ物体を探索させた後、ひとつの物体を新しい物体に置き換えると、正常な動物は新奇物体を優先して長時間探索する<ref name="Enna" /><ref name="Dix"><pubmed>10512585</pubmed></ref> 。Ennaceur&nbsp;&amp; Delacour (1988)<ref name="Enna" /> は45 cm x 65cmで高さ45 cmの壁のある実験アリーナに、2つの同じ物体を置き、これをラットに数分間探索させた(見本段階)。一旦、ラットを広場から出して遅延をおき、再度、動物を2つの物体のある広場に戻し探索させた(テスト段階)。一方は遅延前に提示した物体と同じ物体(馴染物体)で、他方は異なる物体(新奇物体)である(図1)。新奇物体の探索時間が馴染物体の探索時間より長ければ、動物が以前に探索した物体を認知したと結論できる。脳損傷や薬物投与によって馴染物体と新奇物体の探索時間に違いが見られなくなった場合、物体認知の障害が生じていると解釈できる。また、遅延時間に依存して障害が生じる場合には、作業記憶障害が生じている可能性を検討すべきである。この課題は課題のルールに関する学習が必要でないため、参照記憶障害の可能性は除外できるだろう。


 あらかじめ探索させた複数の物体の配置を変化させると、正常な動物では配置の変化した物体に対して探索行動が増加する<ref name="Dix" />。Dix &amp; Aggleton(1999)<ref name="Dix" />は100 cm x 100cmで高さ46 cmの壁のある実験アリーナに、2つの同じ物体を置き、これをラットに数分間探索させた(見本段階)。一旦、ラットを広場から出して遅延をおき、再度動物を2つの物体のある広場に戻し探索させた(テスト段階)。この時、使用する2つの物体は見本段階と同じものであるが、片方の物体のみ、見本とは異なる位置に配置した(図2)。もし新しい位置に移動した物体への探索行動が増加すれば、物体の位置関係についての認知的処理が行われたとみなすことができる。
==== 位置の変化 ====
 
[[Image:Uekita Ob Fig.2.jpg|thumb|350px|'''図2.位置(場所)認知を調べる課題''']]
 
[[Image:Uekita Ob Fig.3.jpg|thumb|350px|'''図3.場所認知と物体認知の複合課題'''<br> (<ref name=ref100 />をもとに作成)]]
 
 あらかじめ探索させた複数の物体の配置を変化させると、正常な動物では配置の変化した物体に対して探索行動が増加する<ref name="Dix" />。Dix &amp; Aggleton(1999)<ref name="Dix" />は100 cm x 100cmで高さ46 cmの壁のある実験アリーナに、2つの同じ物体を置き、これをラットに数分間探索させた(見本段階)。一旦、ラットを広場から出して遅延をおき、再度動物を2つの物体のある広場に戻し探索させた(テスト段階)。この時、使用する2つの物体は見本段階と同じものであるが、片方の物体のみ、見本とは異なる位置に配置した(図2)。もし新しい位置に移動した物体への探索行動が増加すれば、物体の位置関係についての認知的処理が行われたとみなすことができる。


 探索行動の変化は物体の配置の変化の仕方によって異なる<ref name="Thi1987">'''Thinus-Blanc, C., L. Bouzouba, K. Chaix, N. Chapuis, M. Durup, & B. Poucet'''<br>A study of spatial parameters encoded during exploration in hamsters''<br>''Journal of Experimental Psychology: Animal Behavior Processes'':1987,13,418-427</ref>。例えば、4つの物体を配置して馴致した後、第3セッションで1つの物体の配置を変化させると、配置が変わった物体に対して探索時間が増加した。4つの物体の配置を4角形から3角形へと幾何学的に変化させると、配置が変わった物体と変わっていない物体いずれに対しても探索量が増加した。興味深いことに、幾何学的配置を保ったまま、物体間の距離のみが変わった場合には探索時間の増加はみられなかった。また、1つの物体を取り除くと、残った物体への探索量が増加した。  
 探索行動の変化は物体の配置の変化の仕方によって異なる<ref name="Thi1987">'''Thinus-Blanc, C., L. Bouzouba, K. Chaix, N. Chapuis, M. Durup, & B. Poucet'''<br>A study of spatial parameters encoded during exploration in hamsters''<br>''Journal of Experimental Psychology: Animal Behavior Processes'':1987,13,418-427</ref>。例えば、4つの物体を配置して馴致した後、第3セッションで1つの物体の配置を変化させると、配置が変わった物体に対して探索時間が増加した。4つの物体の配置を4角形から3角形へと幾何学的に変化させると、配置が変わった物体と変わっていない物体いずれに対しても探索量が増加した。興味深いことに、幾何学的配置を保ったまま、物体間の距離のみが変わった場合には探索時間の増加はみられなかった。また、1つの物体を取り除くと、残った物体への探索量が増加した。  


 物体の位置関係の認知と物体そのものの認知(2.2.1)やこれらに関わる神経基盤は、物体馴致セッション、空間認識テスト、物体認[[Image:Uekita Ob Fig.3.jpg|right|400px|図3 場所認知と物体認知の複合課題 (Save et al. (1992)をもとに作成)]]識テストを含む一連の手続きによって同時に検討することができる(図3)。Save, Poucet, Foreman, &amp; Buhot (1992)<ref><pubmed>1616611</pubmed></ref> は、円形の実験アリーナに5つの異なる物体を配置し、6分間これをラットに探索させた。全ての物体に対して馴染みを形成するため、物体馴致を3セッション繰り返した後、空間認識テストにおいて2個の物体を移動させた。統制群と前部頭頂皮質損傷群のラットは配置の変化した物体に対して変化していない物体よりも多く探索行動を示したが、海馬損傷群と後部頭頂皮質損傷群のラットではこのような傾向が見られず、物体の位置関係の認知に失敗した。次の物体認識テストでは、一つの物体を新しい物体に置き換えたところ、全ての群のラットが新しい物体に対して探索行動が増加した。これらの結果は、海馬や後部頭頂皮質が物体の位置関係の認知に関与するが、物体自体の認知には関与しない事を示している。位置関係の認知に選択的な障害は、げっ歯類デグーの海馬破壊<ref><pubmed>21291914</pubmed></ref>やラットNMDA受容体の薬理学的阻害<ref>'''関口理久子'''<br>ラットの空間探索行動に及ぼすNMDAアンタゴニスト,MK-801の効果''<br>''心理学研究'':1997,68,88-94</ref>によっても生じることが報告されている。  
 物体の位置関係の認知と物体そのものの認知(2.2.1)やこれらに関わる神経基盤は、物体馴致セッション、空間認識テスト、物体認識テストを含む一連の手続きによって同時に検討することができる(図3)。Save, Poucet, Foreman, &amp; Buhot (1992)<ref name=ref100><pubmed>1616611</pubmed></ref> は、円形の実験アリーナに5つの異なる物体を配置し、6分間これをラットに探索させた。全ての物体に対して馴染みを形成するため、物体馴致を3セッション繰り返した後、空間認識テストにおいて2個の物体を移動させた。統制群と前部頭頂皮質損傷群のラットは配置の変化した物体に対して変化していない物体よりも多く探索行動を示したが、海馬損傷群と後部頭頂皮質損傷群のラットではこのような傾向が見られず、物体の位置関係の認知に失敗した。次の物体認識テストでは、一つの物体を新しい物体に置き換えたところ、全ての群のラットが新しい物体に対して探索行動が増加した。これらの結果は、海馬や後部頭頂皮質が物体の位置関係の認知に関与するが、物体自体の認知には関与しない事を示している。位置関係の認知に選択的な障害は、げっ歯類デグーの海馬破壊<ref><pubmed>21291914</pubmed></ref>やラットNMDA受容体の薬理学的阻害<ref>'''関口理久子'''<br>ラットの空間探索行動に及ぼすNMDAアンタゴニスト,MK-801の効果''<br>''心理学研究'':1997,68,88-94</ref>によっても生じることが報告されている。  
 
==== 環境の変化 ====


==== 環境の変化 [[Image:Uekita Ob Fig.4 new.jpg|right|350px|図4 環境の認知を調べる課題 (Dix & Aggleton, (1999)をもとに作成)丸は物体A、三角は物体Bを示す。]] ====
[[Image:Uekita Ob Fig.4 new.jpg|thumb|350px|'''図4.環境の認知を調べる課題'''<br>(<ref name="Dix" />をもとに作成)丸は物体A、三角は物体Bを示す。]]  


 あらかじめ探索させた物体を異なる環境で再度探索させると、正常な動物では、環境の変化に応じて物体への探索行動が増加することが報告された<ref name="Dix" />。この課題では、セッション1において、相同の二つの物体(A1とA2)を環境Xで探索させ、異なる相同の2つの物体 (B1とB2)を環境Yで探索させる。それぞれの環境で、3分間のセッションを2試行ずつ実施する(見本段階)。5分間の遅延後、ペアー物体のうちの一つの環境を入れ換える(テスト段階)。例えば、環境Xに物体A1と物体B1を配置し探索させる(図4)。この時、物体A1は環境一致物体、物体B1は環境不一致物体である。セッション2において、見本段階での試行の順序を入れ換えて3分間のセッションを2試行ずつ実施し、テスト段階では環境Yに物体A1と物体B1を配置し探索させる。この時、物体A1は環境不一致物体、物体B1は環境一致物体である。このように、それぞれの環境においてテストした結果、正常なラットは、環境一致物体よりも環境不一致物体に対して長い探索行動を示したが、海馬 <ref name="mum2002"><pubmed>11992015</pubmed></ref>や後嗅領皮質 <ref><pubmed>15839802</pubmed></ref>を破壊された動物は両物体への探索行動に違いがなく、環境と物体の組み合わせの変化に反応を示さないことが報告されている。  
 あらかじめ探索させた物体を異なる環境で再度探索させると、正常な動物では、環境の変化に応じて物体への探索行動が増加することが報告された<ref name="Dix" />。この課題では、セッション1において、相同の二つの物体(A1とA2)を環境Xで探索させ、異なる相同の2つの物体 (B1とB2)を環境Yで探索させる。それぞれの環境で、3分間のセッションを2試行ずつ実施する(見本段階)。5分間の遅延後、ペアー物体のうちの一つの環境を入れ換える(テスト段階)。例えば、環境Xに物体A1と物体B1を配置し探索させる(図4)。この時、物体A1は環境一致物体、物体B1は環境不一致物体である。セッション2において、見本段階での試行の順序を入れ換えて3分間のセッションを2試行ずつ実施し、テスト段階では環境Yに物体A1と物体B1を配置し探索させる。この時、物体A1は環境不一致物体、物体B1は環境一致物体である。このように、それぞれの環境においてテストした結果、正常なラットは、環境一致物体よりも環境不一致物体に対して長い探索行動を示したが、海馬 <ref name="mum2002"><pubmed>11992015</pubmed></ref>や後嗅領皮質 <ref><pubmed>15839802</pubmed></ref>を破壊された動物は両物体への探索行動に違いがなく、環境と物体の組み合わせの変化に反応を示さないことが報告されている。  


=== 実施上の注意点  ===
=== 実施上の注意点  ===


 動物が実験環境に十分に慣れていない場合、フリーズが起こり、探索行動そのものが生じない可能性がある。したがって、実験前に10分から15分の短時間の環境馴致を数試行行い、動物を実験環境に慣れさせておく必要がある。 使用する物体に関して、物体の特徴や複雑さによって探索量が異なることがある。したがって、使用する物体がどのくらい探索を引き起こすかをあらかじめ調べ、あまりにも探索量が多い物体と、あまりにも少ない物体は使用しない方がよい。また、探索中に物体についた匂いなどによって物体を弁別する可能性を排除するため、物体はペアーで準備しておき、一方を見本段階、もう一方はテスト段階で用いるようにする必要がある。
 動物が実験環境に十分に慣れていない場合、フリーズが起こり、探索行動そのものが生じない可能性がある。したがって、実験前に10分から15分の短時間の環境馴致を数試行行い、動物を実験環境に慣れさせておく必要がある。使用する物体に関して、物体の特徴や複雑さによって探索量が異なることがある。したがって、使用する物体がどのくらい探索を引き起こすかをあらかじめ調べ、あまりにも探索量が多い物体と、あまりにも少ない物体は使用しない方がよい。また、探索中に物体についた匂いなどによって物体を弁別する可能性を排除するため、物体はペアーで準備しておき、一方を見本段階、もう一方はテスト段階で用いるようにする必要がある。


 データ分析に関して、探索行動は、探索開始から1,2分間は強く現れるが、馴化は比較的素早く生じ、探索行動が終了する。探索終了後のデータは実験操作に対してノイズを加えることになり、テストの初期段階で起こっているだろう新奇嗜好性を不明瞭にしてしまう可能性がある。したがって、1分ごとに探索量を調べ、どのように新奇嗜好性が変化するかを確認する必要がある<ref name="mum2002" />。  
 データ分析に関して、探索行動は、探索開始から1,2分間は強く現れるが、馴化は比較的素早く生じ、探索行動が終了する。探索終了後のデータは実験操作に対してノイズを加えることになり、テストの初期段階で起こっているだろう新奇嗜好性を不明瞭にしてしまう可能性がある。したがって、1分ごとに探索量を調べ、どのように新奇嗜好性が変化するかを確認する必要がある<ref name="mum2002" />。  


 新奇物体への嗜好性は、単純に新奇物体と馴染物体の探索量を比較することでも可能であるが、探索量の個体差の問題を除外するために、馴染物体と新奇物体の全探索量に対する新奇物体探索量の割合として示されることが多い。物体馴致セッションにおける探索量とテストにおける馴染物体または新奇物体の探索量の変化量を指標とすることもある。統計的に有意な嗜好性を示しているかどうかについて、ワンサンプルt検定により、群の平均探索率がチャンスレベルよりも有意に異なっているかどうかを調べることができる。ただし、新奇物体への嗜好性が強いということが、認知能力の高さを示しているかどうかは明らかでない<ref name="Whi" />。また、前述のThinus-Blanc et al.(1987)<ref name="Thi1987" />の実験によると、物体の配置の変化の仕方によって、配置が変わった物体だけでなく、配置が変わっていない物体に対しても探索量が増えることがある。したがって、位置関係の認知的処理ができているかどうかの判断は、単純に移動物体と固定物体の比較だけでは不十分であるだろう。  
 新奇物体への嗜好性は、単純に新奇物体と馴染物体の探索量を比較することでも可能であるが、探索量の個体差の問題を除外するために、馴染物体と新奇物体の全探索量に対する新奇物体探索量の割合として示されることが多い。物体馴致セッションにおける探索量とテストにおける馴染物体または新奇物体の探索量の変化量を指標とすることもある。統計的に有意な嗜好性を示しているかどうかについて、ワンサンプルt検定により、群の平均探索率がチャンスレベルよりも有意に異なっているかどうかを調べることができる。ただし、新奇物体への嗜好性が強いということが、認知能力の高さを示しているかどうかは明らかでない<ref name="Whi" />。また、前述のThinus-Blanc et al.(1987)<ref name="Thi1987" />の実験によると、物体の配置の変化の仕方によって、配置が変わった物体だけでなく、配置が変わっていない物体に対しても探索量が増えることがある。したがって、位置関係の認知的処理ができているかどうかの判断は、単純に移動物体と固定物体の比較だけでは不十分であるだろう。  
48行目: 56行目:


== 関連項目  ==
== 関連項目  ==
空間認知、
*[[空間認知]]
作業記憶、
*[[作業記憶]]
長期記憶、
*[[長期記憶]]
海馬
*[[海馬]]
 
== 参考文献  ==
== 参考文献  ==


<references />
<references />


(執筆者:上北朋子 イラスト:奥村紗音美 担当編集委員:入來篤史)
(執筆者:上北朋子 イラスト:奥村紗音美 担当編集委員:入來篤史)

案内メニュー