16,040
回編集
細編集の要約なし |
細編集の要約なし |
||
6行目: | 6行目: | ||
#特定の遺伝子の破壊や過剰発現により、その遺伝子の機能を調べる。 | #特定の遺伝子の破壊や過剰発現により、その遺伝子の機能を調べる。 | ||
#特定の[[ニューロン]] | #特定の[[ニューロン]]に[[機能プローブ]]([[蛍光タンパク質]]、[[蛍光カルシウムセンサー]]、[[シナプス]]放出抑制因子など)を発現させて、そのニューロンの形態や活動パターン、生理的機能などを調べる。 | ||
#ヒトの[[wikipedia:ja:遺伝性疾患|遺伝性疾患]]と同じ[[wikipedia:ja:突然変異|突然変異]]の導入などにより、疾患モデルを確立する。 | #ヒトの[[wikipedia:ja:遺伝性疾患|遺伝性疾患]]と同じ[[wikipedia:ja:突然変異|突然変異]]の導入などにより、疾患モデルを確立する。 | ||
17行目: | 17行目: | ||
外部から特定の遺伝子を人為的に導入した動物をいう。通常は外来遺伝子が[[wikipedia:ja:生殖細胞|生殖細胞]]系にも導入され、次世代に受け継がれる場合を指す。ただし、外来遺伝子が一部の組織や細胞に局所的に導入され、次世代に受け継がれない場合も広義にはトランスジェニック動物に含まれ、[[wikipedia:ja:遺伝子組換え生物|遺伝子組換え生物]]の拡散などを規制する[[wikipedia:ja:カルタヘナ法|カルタヘナ法]]においても規制の対象となる。 | 外部から特定の遺伝子を人為的に導入した動物をいう。通常は外来遺伝子が[[wikipedia:ja:生殖細胞|生殖細胞]]系にも導入され、次世代に受け継がれる場合を指す。ただし、外来遺伝子が一部の組織や細胞に局所的に導入され、次世代に受け継がれない場合も広義にはトランスジェニック動物に含まれ、[[wikipedia:ja:遺伝子組換え生物|遺伝子組換え生物]]の拡散などを規制する[[wikipedia:ja:カルタヘナ法|カルタヘナ法]]においても規制の対象となる。 | ||
なお、外来遺伝子をゲノム上のランダムな位置に挿入するか、特定の位置を狙って挿入するかで作製方法が異なっており、「トランスジェニック動物」という用語は、前者の場合のみを指すことも多い。後者、すなわち特定の位置を狙って挿入する過程は[[標的遺伝子組換え]]と呼ばれ、特定の遺伝子を破壊するノックアウトの際に特に重要となる(''詳しくは[[標的遺伝子組換え]]の項目を参照'')。 | |||
=== 歴史的背景 === | === 歴史的背景 === | ||
古典的な[[wikipedia:ja:遺伝学|遺伝学]]では、ある表現型を示す[[wikipedia:ja:突然変異体|突然変異体]]において、どの[[wikipedia:ja:遺伝子座|遺伝子座]]に[[wikipedia:ja:突然変異|突然変異]]が存在するかを調べることで、遺伝子と機能の関係を調べる([[順遺伝学的手法]])。しかしこの方法は、突然変異の位置と表現型の相関関係のみを明らかにするという点で、真の意味での遺伝子の機能証明とは言えなかった。そこで、より直接的な遺伝子機能の証明のために、トランスジェニック動物の作製による特定遺伝子の[[機能獲得実験|機能亢進]]や[[機能阻害実験|機能阻害]]の試みがなされるようになった([[逆遺伝学的手法]])。 | |||
トランスジェニック動物の作製は[[マウス]]で初めて報告され、続いて[[ショウジョウバエ]]でも報告された。最初のトランスジェニックマウスは、1970年代に[[wikipedia:Rudolf Jaenisch|Rudolf Jaenisch]]らにより作製された<ref><pubmed> 4364530 </pubmed></ref>,<ref><pubmed> 1063407</pubmed></ref>。Jaenischらは、[[レトロウイルス]]が自身の遺伝子を宿主細胞のゲノムDNAに挿入する性質を利用し、レトロウイルス由来の遺伝子を持つトランスジェニックマウスを作製した。ただし、この方法で導入した外来遺伝子の発現量は低くかつ不均一であったため、応用の観点から有用な技術であるかは不明であった(これはおそらくマウス細胞が自己防衛のために、レトロウイルス由来の遺伝子の発現を抑制したことに因る)。その後1980年にJon Gordon、Frank Ruddleらにより、現在の主流となっているマウス[[wikipedia:ja:受精卵|受精卵]]前核にDNAを注入するという方法が初めて実践された<ref><pubmed>6261253</pubmed></ref>。この方法だと高い発現量が得られる上に、非常に大きな遺伝子も導入できる利点がある。 | |||
遺伝学の研究材料として古くから利用されてきたショウジョウバエでも、1982年にAllan Spradling、Gerald Rubinらによって外来遺伝子の導入方法が確立された <ref><pubmed> 6289435 </pubmed></ref>,<ref><pubmed> 6289436</pubmed></ref> | 遺伝学の研究材料として古くから利用されてきたショウジョウバエでも、1982年にAllan Spradling、Gerald Rubinらによって外来遺伝子の導入方法が確立された <ref><pubmed> 6289435 </pubmed></ref>,<ref><pubmed> 6289436</pubmed></ref>。ショウジョウバエの場合は、[[トランスポゾン]]が自身のDNAをゲノム中に挿入する性質を利用する。 | ||
なお、マウスで初期に試されたレトロウイルスを用いた方法も、近年再び大きく注目されるようになった。レトロウイルスの中でも[[レンチウイルス]]を用いることで、外来遺伝子が発現しにくい問題が克服され、導入効率も非常に高いためである。例えば、[[wikipedia:ja:霊長類|霊長類]]初のトランスジェニック動物であるトランスジェニックマーモセットは、レンチウイルスを利用して作製された<ref><pubmed>19478777</pubmed></ref>。従って、当初の3つのアプローチ(DNAの直接注入・トランスポゾンの利用・レトロウイルスの利用)が現在でも主要なストラテジーであると言える。 | |||
また、1980年代後半には、ゲノム上の特定の遺伝子を破壊するために、従来のトランスジェニックマウス作製技術と、[[DNA相同組換え]]や[[胚性幹細胞]]([[ES細胞]])の培養技術などを組み合わせ、外来DNAを目的の遺伝子の途中に挿入したいわゆるノックアウトマウスが作製された。 | |||
== 外来遺伝子をゲノム上のランダムな位置に挿入する場合 == | == 外来遺伝子をゲノム上のランダムな位置に挿入する場合 == | ||
特定の遺伝子を含むDNAを生殖細胞や[[wikipedia:ja:受精卵|受精卵]]などに注入すると、一定の確率でDNAはゲノム上のランダムな位置に挿入され、その細胞が生殖可能な成体へと成長した際には次世代へと受け継がれるようになる。注入するDNAは、目的の遺伝子に[[プロモーター]]や[[エンハンサー]]、[[wikipedia:ja:イントロン|イントロン]]や[[wikipedia:ja:ポリアデニル化|ポリA付加シグナル]]なども加えることで、特定の組織や細胞種で効率よく発現させることが可能である。ただし実際には、導入遺伝子の発現は挿入されたゲノム上の位置の影響(位置効果;position effect)や挿入された導入遺伝子の数(コピー数;copy number)の影響も受けるため、予想した発現パターンと異なることも多い。また動物種によっては、外来遺伝子が挿入された個体と挿入されなかった個体の識別を容易にするために、何らかのマーカー遺伝子(marker | 特定の遺伝子を含むDNAを生殖細胞や[[wikipedia:ja:受精卵|受精卵]]などに注入すると、一定の確率でDNAはゲノム上のランダムな位置に挿入され、その細胞が生殖可能な成体へと成長した際には次世代へと受け継がれるようになる。注入するDNAは、目的の遺伝子に[[プロモーター]]や[[エンハンサー]]、[[wikipedia:ja:イントロン|イントロン]]や[[wikipedia:ja:ポリアデニル化|ポリA付加シグナル]]なども加えることで、特定の組織や細胞種で効率よく発現させることが可能である。ただし実際には、導入遺伝子の発現は挿入されたゲノム上の位置の影響(位置効果;position effect)や挿入された導入遺伝子の数(コピー数;copy number)の影響も受けるため、予想した発現パターンと異なることも多い。また動物種によっては、外来遺伝子が挿入された個体と挿入されなかった個体の識別を容易にするために、何らかのマーカー遺伝子(marker gene)も同時に注入することがある。後述の標的遺伝子組換えと比べると手順の煩雑さが少なく、現在ではマウス、ショウジョウバエ、[[線虫]]、[[ゼブラフィッシュ]]などの古典的な[[モデル動物]]以外の様々な動物種でも方法が確立されている。 | ||
<br> | マウス以外の多くの動物種では、単にDNAを注入しただけではゲノム中に取り込まれる確率が非常に低い。しかしこうした動物でも、トランスポゾンや[[ウイルスベクター]]、[[wikipedia:ja:DNAエンドヌクレアーゼ|DNAエンドヌクレアーゼ]]などを利用することで、トランスジェニック動物の作製が可能となることがある。ここでは、マウスとその他の哺乳類動物種、ショウジョウバエ、線虫についてより詳しく紹介する。 <br> [[Image:Yuhayashi fig 1.jpg|thumb|right|500px|'''図1. トランスジェニックマウスの作製方法''']] | ||
=== | ===受精卵前核へのDNAの顕微注入=== | ||
マウスの場合は、受精卵前核にDNAを顕微注入する方法が一般的である(図1、図2)<ref name="ref1">'''Andras Nagy, Marina Gertsenstein, Kristina Vintersten, Richard Behringer'''<br>Manipulating the mouse embryo: A Laboratory Manual 3rd Ed.<br>'' Cold Spring Harbor Laboratory Press'':2003</ref>。これにより外来遺伝子はゲノム上の一か所に、複数コピーが一列に並んだ状態で挿入される。通常トランスジェニックマウスと言うと、このようにして外来遺伝子を導入したマウスを指し、後述の標的遺伝子組換えを行ったマウス([[ノックインマウス]]、ノックアウトマウスや[[Floxed mouse]])と区別する(ただし、厳密には全てトランスジェニックニック動物である)。[[Image:Yuhayashi fig 2.jpg|thumb|right|350px|'''図2. 哺乳類受精卵への遺伝子導入方法'''<br>(A) 受精卵の前核へのDNAの注入による遺伝子導入(マウスで主流)<br>(B) レンチウイルス感染による受精卵への遺伝子導入(マウス以外の動物種で主流)<br>(A)だと卵細胞内のさらに前核までガラス管を挿入しなければならないのに対し、(B)では卵細胞外の空間に注入すれば良く、細胞質の不透明な動物種でも容易にできる。しかも注入した外来遺伝子がゲノム中に取り込まれる確率が高いため、少数の受精卵で済む。従って受精卵の高価な、マウス以外の動物ではこちらの方法がよく用いられる。(B)の短所としては、目的遺伝子をレンチウイルスに導入する手間がかかることや、導入できる遺伝子のサイズが限られていることなどが挙げられる。]] | |||
分子生物学の研究材料としてよく用いられる[[線虫]]''Caenorhabditis elegans''の場合も同様に生殖細胞に直接DNAを注入する方法が主流である。注入されたDNAがゲノムに挿入されることは極めて稀だが、それでも細胞分裂の際に[[wikipedia:ja:染色体|染色体]]とは独立に複製、分配される<ref><pubmed> 3837845 </pubmed></ref>。これは、線虫の[[wikipedia:ja:染色体|染色体]]が[[wikipedia:ja:セントロメア|セントロメア]]に特化した部位を要さない性質(holocentric)と関係すると考えられる<ref><pubmed> 22018540 </pubmed></ref>。 | |||
===レンチウイルスを用いる方法=== | |||
受精卵前核にDNAを顕微注入する、というマウスで一般的な方法は、他の哺乳類動物にも適応可能な場合が多い。しかしながらこの方法だと導入効率が悪く、通常数百個程度の受精卵が必要となり、マウス以外では非常に高価となる。さらに、多くの動物はマウスと異なり受精卵の細胞質が不透明なため、前核への正確な注入が困難となり、一層効率が下がる。そこで近年は、レトロウイルスの一種であるレンチウイルスを用いる方法が大きく注目されている(図2)。レトロウイルスは自身の遺伝子を感染した宿主細胞のゲノム中に挿入する性質がある。中でも、レンチウイルスは分裂中でない細胞にも感染しやすいことや、その遺伝子が宿主細胞によるサイレンシングを受けにくいなどの性質から、トランスジェニック動物作製に非常に有用である。外来遺伝子をDNAの状態で直接受精卵に注入する場合は卵細胞外内の前核に注入する必要がある。これにに対し、あらかじめレンチウイルスに導入してから注入する場合は、卵細胞外にある[[囲卵腔]]という空間に注入すればよく、しかも効率は遥かに高い。これまでに、マウス、[[wikipedia:ja:ラット|ラット]]、[[wikipedia:ja:ブタ|ブタ]]、[[wikipedia:ja:ウシ|ウシ]]などに加え、霊長類である[[コモンマーモセット]]でも、レンチウイルスを用いることで、効率よくトランスジェニック動物が作製できることが報告されている。 | |||
< | === トランスポゾンを用いる方法=== | ||
ショウジョウバエでは、[[wikipedia:ja:P因子|P因子]](P element)と呼ばれるトランスポゾンを利用する。このトランスポゾンは、[[トランスポゼース]]をコードする遺伝子と、トランスポゼースの認識配列からなる。導入したい遺伝子の前後に認識配列を付加し、トランスポゼースをコードする遺伝子も同時に胚に注入することで、トランスポゾンがゲノムに挿入されるのと同じ原理で目的の遺伝子が挿入される。現在では様々な[[wikipedia:ja:脊椎動物|脊椎動物]]・[[wikipedia:ja:無脊椎動物|無脊椎動物]]において、各動物種への遺伝子導入に適したトランスポゾンが同定されている<ref><pubmed> 18047686</pubmed></ref><ref><pubmed> 19478801 </pubmed></ref>。 | |||
== 外来遺伝子をゲノム上の特定の位置に挿入する場合 == | == 外来遺伝子をゲノム上の特定の位置に挿入する場合 == | ||
64行目: | 55行目: | ||
標的遺伝子組換えには、[[wikipedia:ja:相同組換え|相同組換え]](homologous recombination)という現象を利用する。具体的には、導入したい遺伝子の前後にゲノム上の目的部分の前後と同じDNA配列をつなぐと、稀に外来遺伝子がゲノム上の目的部分を置換する形で挿入される。これを利用し、外来遺伝子をゲノム上の特定の遺伝子の必須な部分と置換させることで、その遺伝子を破壊することができる(ノックアウト)。また、蛍光タンパク質遺伝子などを特定の細胞種に発現させたい場合に、その細胞種に発現することが知られる遺伝子の3’末端部分などに挿入することがある(ノックイン)。ノックインだと、前述のランダムな挿入と異なり位置効果の心配がなく、コピー数もコントロールでき、必要なシスエレメントも全て揃っているため、期待通りの発現パターンを得やすい。ただし、ランダムな挿入と異なり、標的遺伝子組換えの手法が確立されている動物種は非常に限られている。 | 標的遺伝子組換えには、[[wikipedia:ja:相同組換え|相同組換え]](homologous recombination)という現象を利用する。具体的には、導入したい遺伝子の前後にゲノム上の目的部分の前後と同じDNA配列をつなぐと、稀に外来遺伝子がゲノム上の目的部分を置換する形で挿入される。これを利用し、外来遺伝子をゲノム上の特定の遺伝子の必須な部分と置換させることで、その遺伝子を破壊することができる(ノックアウト)。また、蛍光タンパク質遺伝子などを特定の細胞種に発現させたい場合に、その細胞種に発現することが知られる遺伝子の3’末端部分などに挿入することがある(ノックイン)。ノックインだと、前述のランダムな挿入と異なり位置効果の心配がなく、コピー数もコントロールでき、必要なシスエレメントも全て揃っているため、期待通りの発現パターンを得やすい。ただし、ランダムな挿入と異なり、標的遺伝子組換えの手法が確立されている動物種は非常に限られている。 | ||
===胚性幹細胞を用いた方法=== | |||
=== | |||
標的遺伝子組換えが最も一般的な技術となっているマウスでは、まず培養した[[胚性幹細胞]](embryonic stem cell;ES cell)に外来遺伝子を導入する<ref name="ref1" />。その中から相同組換えが確認されたES細胞を選び、発生初期の[[wikipedia:ja:胚盤胞期胚|胚盤胞期胚]](blastocyst-stage embryo)に注入する。すると、全身の一部の細胞が注入したES細胞に由来するキメラマウス(chimera mouse)が得られる。このキメラマウスの次世代で、全身の全ての細胞が外来遺伝子を含むマウスを得ることができる。 | 標的遺伝子組換えが最も一般的な技術となっているマウスでは、まず培養した[[胚性幹細胞]](embryonic stem cell;ES cell)に外来遺伝子を導入する<ref name="ref1" />。その中から相同組換えが確認されたES細胞を選び、発生初期の[[wikipedia:ja:胚盤胞期胚|胚盤胞期胚]](blastocyst-stage embryo)に注入する。すると、全身の一部の細胞が注入したES細胞に由来するキメラマウス(chimera mouse)が得られる。このキメラマウスの次世代で、全身の全ての細胞が外来遺伝子を含むマウスを得ることができる。 | ||
マウスでは上記のノックアウトやノックインに加え、特定の遺伝子の前後に[[Cre/loxPシステム#loxP.E9.85.8D.E5.88.97|loxP]]配列を挿入することもしばしば行われる(このようなマウスは「floxed mouse」と呼ばれる)。loxPとは、[[DNA組換え]]酵素[[Cre/loxPシステム#Cre.E3.83.AC.E3.82.B3.E3.83.B3.E3.83.93.E3.83.8A.E3.83.BC.E3.82.BC|Cre]]が認識する34塩基からなるDNA配列である。Creは2つのloxP配列を認識すると、両者の間で高効率に相同組換えを起こす。従って特定の遺伝子の前後にloxPを挿入した場合、Cre存在下でその遺伝子は切り出されて破壊されることとなる。Floxed mouseと、特定の細胞種や時期にCreを発現するトランスジェニックマウスとを掛け合わせることで、細胞種や時期特異的な遺伝子の破壊([[コンディショナルノックアウト]])が可能となる。脳科学の研究においては、ニューロンを構成する因子の多くが発生過程と成体の双方で重要な役割を担い、また、様々な脳部位で発現するため、コンディショナルノックアウトは有用な技術となっている。 | マウスでは上記のノックアウトやノックインに加え、特定の遺伝子の前後に[[Cre/loxPシステム#loxP.E9.85.8D.E5.88.97|loxP]]配列を挿入することもしばしば行われる(このようなマウスは「floxed mouse」と呼ばれる)。loxPとは、[[DNA組換え]]酵素[[Cre/loxPシステム#Cre.E3.83.AC.E3.82.B3.E3.83.B3.E3.83.93.E3.83.8A.E3.83.BC.E3.82.BC|Cre]]が認識する34塩基からなるDNA配列である。Creは2つのloxP配列を認識すると、両者の間で高効率に相同組換えを起こす。従って特定の遺伝子の前後にloxPを挿入した場合、Cre存在下でその遺伝子は切り出されて破壊されることとなる。Floxed mouseと、特定の細胞種や時期にCreを発現するトランスジェニックマウスとを掛け合わせることで、細胞種や時期特異的な遺伝子の破壊([[コンディショナルノックアウト]])が可能となる。脳科学の研究においては、ニューロンを構成する因子の多くが発生過程と成体の双方で重要な役割を担い、また、様々な脳部位で発現するため、コンディショナルノックアウトは有用な技術となっている。 | ||
=== | === その他の方法=== | ||
マウス以外のモデル動物でも標的遺伝子組換えの報告はあるが、マウスほど一般的な技法としては普及していない。その理由としては、外来遺伝子の相同組換えによる挿入の確率が非常に低いことに加え、それよりもはるかに起こりやすいランダムな位置への挿入との簡単な識別方法などが十分確立されていないことが挙げられる。ただし、近年のトランスポゾンや[[wikipedia:ja:ジンクフィンガーヌクレアーゼ|ジンクフィンガーヌクレアーゼ]](zinc finger nucleases;ZFNs)を利用した高効率な標的遺伝子組換え技術の開発<ref><pubmed> 12730594 </pubmed></ref><ref><pubmed> 17159906 </pubmed></ref>により、今後は様々な動物種での標的遺伝子組換えの簡易化が期待される。これらの手法は、ゲノムDNAに損傷が生じた際の修復時に、損傷部位の近傍で相同組み換えが起こりやすいことを利用する。特にジンクフィンガーヌクレアーゼは、DNA結合ドメインのデザイン次第でDNA損傷を導入する部位をある程度自由に選べることから大きく注目されている。こうした高効率な手法の確立は、マウスにおいても、従来のES細胞を利用する煩雑な方法の回避につながることが期待される。 | マウス以外のモデル動物でも標的遺伝子組換えの報告はあるが、マウスほど一般的な技法としては普及していない。その理由としては、外来遺伝子の相同組換えによる挿入の確率が非常に低いことに加え、それよりもはるかに起こりやすいランダムな位置への挿入との簡単な識別方法などが十分確立されていないことが挙げられる。ただし、近年のトランスポゾンや[[wikipedia:ja:ジンクフィンガーヌクレアーゼ|ジンクフィンガーヌクレアーゼ]](zinc finger nucleases;ZFNs)を利用した高効率な標的遺伝子組換え技術の開発<ref><pubmed> 12730594 </pubmed></ref><ref><pubmed> 17159906 </pubmed></ref>により、今後は様々な動物種での標的遺伝子組換えの簡易化が期待される。これらの手法は、ゲノムDNAに損傷が生じた際の修復時に、損傷部位の近傍で相同組み換えが起こりやすいことを利用する。特にジンクフィンガーヌクレアーゼは、DNA結合ドメインのデザイン次第でDNA損傷を導入する部位をある程度自由に選べることから大きく注目されている。こうした高効率な手法の確立は、マウスにおいても、従来のES細胞を利用する煩雑な方法の回避につながることが期待される。 | ||
94行目: | 81行目: | ||
<references /> | <references /> | ||
(執筆担当者: 林 悠 担当編集委員: 林 康紀) |