「Myocyte enhancer factor-2」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
27行目: 27行目:


 MEF2は[[wikipedia:ja:ゲノム|ゲノム]]上の特定の[[wikipedia:ja:DNA|DNA]]結合配列([[MEF2 reguratory element]]、[[MRE]])に結合して下流の遺伝子の転写活性化を促進する。また、MEF2は他の転写因子や補因子と多種多様な複合体を形成することにより、さらに巧妙な標的遺伝子の発現調節をおこなう。
 MEF2は[[wikipedia:ja:ゲノム|ゲノム]]上の特定の[[wikipedia:ja:DNA|DNA]]結合配列([[MEF2 reguratory element]]、[[MRE]])に結合して下流の遺伝子の転写活性化を促進する。また、MEF2は他の転写因子や補因子と多種多様な複合体を形成することにより、さらに巧妙な標的遺伝子の発現調節をおこなう。
 MEF2は[[wikipedia:ja:ゲノム|ゲノム]]上の特定の[[wikipedia:ja:DNA|DNA]]結合配列([[MEF2 reguratory element]]、[[MRE]])に結合して下流の遺伝子の転写活性化を促進する。さらにMEF2は他の転写因子や補因子と多種多様な複合体を形成することにより標的遺伝子の巧妙な発現調節をおこなう。


==構造==
==構造==
[[image:MEF2.jpg|thumb|300px|'''図.MEF2のドメイン構造と転写活性化機構のモデル'''<br>MEF2はMADS-MEF2ドメインと転写活性化ドメインの2つのドメインをもち、MADS-MEF2ドメインを介して2量体を形成しDNA認識配列(MRE)に結合する。定常状態ではMEF2はクラス2のヒストン脱アセチル酵素(HDACs)と結合しており、標的遺伝子の転写を抑制している。この抑制はカルシウムなどの活性化シグナルにより解除され、MEF2はヒストンアセチル化酵素(HAT)p300等と新たなタンパク複合体を形成することにより、標的遺伝子の転写を促進する。]]
[[image:MEF2.jpg|thumb|300px|'''図.MEF2のドメイン構造と転写活性化機構のモデル'''<br>MEF2はMADS-MEF2ドメインと転写活性化ドメインの2つのドメインをもち、MADS-MEF2ドメインを介して2量体を形成しDNA認識配列(MRE)に結合する。定常状態ではMEF2はクラス2のヒストン脱アセチル酵素(HDACs)と結合しており、標的遺伝子の転写を抑制している。この抑制はカルシウムなどの活性化シグナルにより解除され、MEF2はヒストンアセチル化酵素(HAT)p300等と新たなタンパク複合体を形成することにより、標的遺伝子の転写を促進する。]]


 MEF2は約500アミノ酸からなるタンパク質で、N末部の約90アミノ酸残基はファミリー内で相同性の高い領域であり、この部分はさらにMADS(MCM1-Agamous-Deficiens-Serum response factor)ボックスと呼ばれる他の転写因子と相同性のある領域とMEF2ファミリー間で保存されているMEF2相同領域に区分できる。一方、約400アミノ酸残基からなるC末側はMEFファミリー内および他の遺伝子とは相同性が低い領域であり、転写活性化ドメインとして機能している。核移行シグナルもC末部に存在する。MEF2タンパク質はMADS-MEF2ドメインを介してホモ2量体およびサブタイプ間でのヘテロ2量体を形成し、DNA認識配列MRE(コンセンサス配列=[(C/T)TA(A/T)4TA(G/A)])に結合する。またMADS-MEF2ドメインは[[ヒストン脱アセチル化酵素]]([[HDACs]])や転写因子等と相互作用することにより転写制御にも関与する(図)。
 MEF2は約500アミノ酸からなるタンパク質で、N末部の約90アミノ酸残基はファミリー内で相同性の高い領域であり、この部分はさらにMADS(MCM1-Agamous-Deficiens-Serum response factor)ボックスと呼ばれる他の転写因子と相同性のある領域とMEF2ファミリー間で保存されているMEF2相同領域に区分できる。一方、約400アミノ酸残基からなるC末側はMEFファミリー内および他の遺伝子とは相同性が低い領域であり、転写活性化ドメインとして機能している。核移行シグナルもC末部に存在する。
 
 MEF2タンパク質はMADS-MEF2ドメインを介してホモ2量体およびサブタイプ間でのヘテロ2量体を形成し、DNA認識配列MRE(コンセンサス配列=[(C/T)TA(A/T)4TA(G/A)])に結合する。またMADS-MEF2ドメインは[[ヒストン脱アセチル化酵素]]([[HDACs]])や転写因子等と相互作用することにより転写制御にも関与する(図)。


==発現==
==発現==
39行目: 39行目:


==機能調節==
==機能調節==
 MEF2による転写制御は神経機能に重要な役割を果たしていることが明らかになってきたが(次項参照)、神経細胞におけるMEF2の機能調節の詳細は不明である。現在のところ、MEF2の機能調節機構に関する多くの知見は筋細胞や免疫系細胞などの神経細胞以外を用いた研究から得られたものである。一般に、MEF2は活性化状態に関わらず核内でMREに結合しており、基底状態においてはHDACsと結合することによりヒストン修飾を介した積極的な転写抑性に関与していると考えられている<ref name=ref3><pubmed>11796223</pubmed></ref>。ここにカルシウムシグナルやその他の活性化シグナルが核に伝わると、MEF2標的遺伝子の転写が活性化されるが、その活性化機構は[[リン酸化]]・[[脱リン酸化]]によって巧妙に制御されている。まず、リン酸化酵素カスケードによってHDACsがリン酸化されることによりMEF2から脱離し、替わりにヒストンアセチル化酵素(HAT)であるp300がMEF2と結合してクロマチンのリモデリングを引き起こし転写活性を増強させるというメカニズムが想定されている<ref name=ref3><pubmed>11796223</pubmed></ref>(図)。また、ERK5やJNK、p38キナーゼなどのMAPキナーゼ経路によりMEF2の転写活性化ドメインにある複数のアミノ酸残基(MEF2CにおいてはThr293, Thr300, Ser387等)がリン酸化されることにより、MEF2自身の転写活性化能が増強するという制御機構も存在する<ref name=ref4><pubmed>11150724</pubmed></ref>。さらに、[[カルシウム]]依存的な[[脱リン酸化酵素]]である[[カルシニューリン]]([[PP2B]])による制御も報告されている。カルシニューリンは細胞体においてNFATを脱リン酸化することにより核移行を引き起こし、MEF2と結合することによりMREからの転写活性を促進する<ref name=ref3 />。また、MEF2の転写活性化ドメインの特定の残基(例えばMEF2CのSer396やMEF2AのSer408)は基底状態においてリン酸化されており転写活性を抑性する方向に働いているが、カルシニューリン等によるこれら修飾残基の脱リン酸化は転写活性化を促進する<ref name=ref5><pubmed>15340086</pubmed></ref> <ref name=ref6><pubmed>16484498</pubmed></ref>。
 MEF2による転写制御は神経機能に重要な役割を果たしていることが明らかになってきたが(次項参照)、神経細胞におけるMEF2の機能調節の詳細は不明である。現在のところ、MEF2の機能調節機構に関する多くの知見は筋細胞や免疫系細胞などの神経細胞以外を用いた研究から得られたものである。一般に、MEF2は活性化状態に関わらず核内でMREに結合しており、基底状態においてはHDACsと結合することによりヒストン修飾を介した積極的な転写抑性に関与していると考えられている<ref name=ref3><pubmed>11796223</pubmed></ref>。ここにカルシウムシグナルやその他の活性化シグナルが核に伝わると、MEF2標的遺伝子の転写が活性化されるが、その活性化機構は[[リン酸化]]・[[脱リン酸化]]によって巧妙に制御されている。まず、リン酸化酵素カスケードによってHDACsがリン酸化されることによりMEF2から脱離し、替わりにヒストンアセチル化酵素(HAT)であるp300がMEF2と結合してクロマチンのリモデリングを引き起こし転写活性を増強させるというメカニズムが想定されている<ref name=ref3><pubmed>11796223</pubmed></ref>(図)。また、ERK5やJNK、p38キナーゼなどのMAPキナーゼ経路によりMEF2の転写活性化ドメインにある複数のアミノ酸残基(MEF2CにおいてはThr293, Thr300, Ser387等)がリン酸化されることにより、MEF2自身の転写活性化能が増強するという制御機構も存在する<ref name=ref4><pubmed>11150724</pubmed></ref>
 
 さらに、[[カルシウム]]依存的な[[脱リン酸化酵素]]である[[カルシニューリン]]([[PP2B]])による制御も報告されている。カルシニューリンは細胞体においてNFATを脱リン酸化することにより核移行を引き起こし、MEF2と結合することによりMREからの転写活性を促進する<ref name=ref3 />。また、MEF2の転写活性化ドメインの特定の残基(例えばMEF2CのSer396やMEF2AのSer408)は基底状態においてリン酸化されており転写活性を抑性する方向に働いているが、カルシニューリン等によるこれら修飾残基の脱リン酸化は転写活性化を促進する<ref name=ref5><pubmed>15340086</pubmed></ref> <ref name=ref6><pubmed>16484498</pubmed></ref>。


 神経細胞においてシナプス活動はカルシウムイオンの流入を引き起こし、[[カルシウム・カルモジュリン依存的キナーゼ]]([[CaMK]])や[[MAPキナーゼ]]([[MAPK]])、およびカルシニューリンの活性化が起こる。これらのリン酸化制御酵素によるMEF2およびMEF2相互作用タンパクのリン酸化状態の巧妙な制御により、MEF2による神経活動依存的な転写活性化が引き起こされていると考えられる<ref name=ref3 />。さらに、MEF2は[[SUMO化]]などのリン酸化以外の翻訳後修飾も受けており、これらの修飾がMEF2の転写活性を調節している可能性が示唆されている<ref name=ref6 />。
 神経細胞においてシナプス活動はカルシウムイオンの流入を引き起こし、[[カルシウム・カルモジュリン依存的キナーゼ]]([[CaMK]])や[[MAPキナーゼ]]([[MAPK]])、およびカルシニューリンの活性化が起こる。これらのリン酸化制御酵素によるMEF2およびMEF2相互作用タンパクのリン酸化状態の巧妙な制御により、MEF2による神経活動依存的な転写活性化が引き起こされていると考えられる<ref name=ref3 />。さらに、MEF2は[[SUMO化]]などのリン酸化以外の翻訳後修飾も受けており、これらの修飾がMEF2の転写活性を調節している可能性が示唆されている<ref name=ref6 />。

案内メニュー