「RNA干渉」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
7行目: 7行目:


== RNA干渉とは ==
== RNA干渉とは ==
 1998年に、線虫の発生遺伝学者Craig MelloとAndrew Fire両博士によって見出された遺伝子発現抑制機構である<ref name=ref1><pubmed>9486653</pubmed></ref>。Mello博士らは、発生に関わる遺伝子の機能解析を目的として、線虫体内に、標的mRNAに対して相補的な配列をもつ一本鎖RNA(アンチセンス鎖)、その逆鎖である一本鎖RNA(センス鎖)、その両者からなる二本鎖RNAを別途投与することによって、二本鎖RNAが高い遺伝子発現抑制効果を示すことを見出した。この発見をきっかけにRNA干渉の研究は飛躍的にすすみ、現在では、二本鎖RNA はshort interfering RNA(siRNA)の前駆体であることが明らかとなっている<ref name=ref2><pubmed></pubmed></ref> <ref name=ref3><pubmed></pubmed></ref> <ref name=ref4><pubmed></pubmed></ref>。microRNA(miRNA)の発見は、1993年にまでさかのぼることが出来る。これはVictor Ambros博士によるものであるが<ref name=ref5><pubmed></pubmed></ref>、Ambros博士は、C. elegansのlin-4遺伝子産物がタンパク質をコードしない小分子RNAであるにもかかわらず、lin-14遺伝子産物であるLIN-14タンパク質の発現を負に調節する因子であることを見出した。siRNAもmiRNAもその生合成にDicerを必要とする、また遺伝子の発現を抑制するにはArgonauteタンパク質とRISC(RNA induced silencing complex)を形成する必要がある、などお互い類似したメカニズムで起こることを特徴とする<ref name=ref2 /> <ref name=ref3 /> <ref name=ref4 />。現在までに単細胞から哺乳動物に至る様々な生物で内在性の小分子RNAがRNA干渉のメカニズムにより遺伝子制御に関わることが見いだされ、発生や代謝、ウイルス感染防御など生命維持に欠かせない多くの現象を制御し、生体の恒常性を維持する働きを有することが分かっている<ref name=ref2 /> <ref name=ref3 /> <ref name=ref4 />。RNAi関連分子の機能異常が発症原因となる疾患も見つかってきている<ref name=ref6><pubmed></pubmed></ref>。
 1998年に、線虫の発生遺伝学者Craig MelloとAndrew Fire両博士によって見出された遺伝子発現抑制機構である<ref name=ref1><pubmed>9486653</pubmed></ref>。Mello博士らは、発生に関わる遺伝子の機能解析を目的として、線虫体内に、標的mRNAに対して相補的な配列をもつ一本鎖RNA(アンチセンス鎖)、その逆鎖である一本鎖RNA(センス鎖)、その両者からなる二本鎖RNAを別途投与することによって、二本鎖RNAが高い遺伝子発現抑制効果を示すことを見出した。この発見をきっかけにRNA干渉の研究は飛躍的にすすみ、現在では、二本鎖RNA はshort interfering RNA(siRNA)の前駆体であることが明らかとなっている<ref name=ref2><pubmed>19148191</pubmed></ref> <ref name=ref3><pubmed>19165215</pubmed></ref> <ref name=ref4><pubmed>19158785</pubmed></ref>。microRNA(miRNA)の発見は、1993年にまでさかのぼることが出来る。これはVictor Ambros博士によるものであるが<ref name=ref5><pubmed>8252621</pubmed></ref>、Ambros博士は、C. elegansのlin-4遺伝子産物がタンパク質をコードしない小分子RNAであるにもかかわらず、lin-14遺伝子産物であるLIN-14タンパク質の発現を負に調節する因子であることを見出した。siRNAもmiRNAもその生合成にDicerを必要とする、また遺伝子の発現を抑制するにはArgonauteタンパク質とRISC(RNA induced silencing complex)を形成する必要がある、などお互い類似したメカニズムで起こることを特徴とする<ref name=ref2 /> <ref name=ref3 /> <ref name=ref4 />。現在までに単細胞から哺乳動物に至る様々な生物で内在性の小分子RNAがRNA干渉のメカニズムにより遺伝子制御に関わることが見いだされ、発生や代謝、ウイルス感染防御など生命維持に欠かせない多くの現象を制御し、生体の恒常性を維持する働きを有することが分かっている<ref name=ref2 /> <ref name=ref3 /> <ref name=ref4 />。RNAi関連分子の機能異常が発症原因となる疾患も見つかってきている<ref name=ref6><pubmed>20735434</pubmed></ref>。


 また、RNA干渉は、遺伝子機能探索の技術としてヒト細胞や個体でも応用が可能で、創薬に繋がる大きな可能性を秘めているため、基礎・応用に限らず国内外の多くの研究者がRNAサイレンシングを研究対象としている。
 また、RNA干渉は、遺伝子機能探索の技術としてヒト細胞や個体でも応用が可能で、創薬に繋がる大きな可能性を秘めているため、基礎・応用に限らず国内外の多くの研究者がRNAサイレンシングを研究対象としている。
23行目: 23行目:
===miRNA===
===miRNA===


 動物や植物に限らず多くの生物はmiRNAを発現する<ref name=ref.7><pubmed></pubmed></ref> <ref name=ref8><pubmed></pubmed></ref>。miRNAは恒常的であるが、各miRNAの発現は個体において時空間的に調節されている。
 動物や植物に限らず多くの生物はmiRNAを発現する<ref name=ref.7><pubmed>11081512</pubmed></ref> <ref name=ref8><pubmed>14744438</pubmed></ref>。miRNAは恒常的であるが、各miRNAの発現は個体において時空間的に調節されている。


 ゲノム上に位置するmiRNA遺伝子から発現したmiRNA転写産物は一本鎖RNAであるが、ヘアピン構造をとることを特徴とする<ref name=ref9><pubmed></pubmed></ref> <ref name=ref10><pubmed></pubmed></ref> <ref name=ref11><pubmed></pubmed></ref>。核でまずRNaseIIIドメインをもったDroshaによって第一次プロセシングを受け細胞質へ移行する。細胞質ではDicerによって第二次プロセシングを受け、二本鎖miRNAとして切り出される。その後1本鎖となったmiRNAは、siRNAと同様にArgonauteタンパク質と結合することによってmiRISCを形成する。哺乳動物のmiRNAの場合、標的mRNAへの対合にはシード配列とよばれる5’末端から2~7塩基が関わる。つまり、siRNAと異なり、標的RNAとの対合がmiRNAの5’末端から10塩基目と11塩基目まで及ばないため、Argonauteタンパク質は標的RNAを切断する事が出来ない。miRISC にはGW182タンパク質を介してRNA分解酵素が結合するが、これら因子の助けを借りて、miRISCは標的RNAの不安定性を導く。標的mRNAの翻訳を阻害することも知られる。つまり、siRNAとmiRNAでは標的RNAの発現抑制の分子メカニズムが異なることを特徴とする。
 ゲノム上に位置するmiRNA遺伝子から発現したmiRNA転写産物は一本鎖RNAであるが、ヘアピン構造をとることを特徴とする<ref name=ref9><pubmed>21245828</pubmed></ref> <ref name=ref10><pubmed></pubmed></ref> <ref name=ref11><pubmed></pubmed></ref>。核でまずRNaseIIIドメインをもったDroshaによって第一次プロセシングを受け細胞質へ移行する。細胞質ではDicerによって第二次プロセシングを受け、二本鎖miRNAとして切り出される。その後1本鎖となったmiRNAは、siRNAと同様にArgonauteタンパク質と結合することによってmiRISCを形成する。哺乳動物のmiRNAの場合、標的mRNAへの対合にはシード配列とよばれる5’末端から2~7塩基が関わる。つまり、siRNAと異なり、標的RNAとの対合がmiRNAの5’末端から10塩基目と11塩基目まで及ばないため、Argonauteタンパク質は標的RNAを切断する事が出来ない。miRISC にはGW182タンパク質を介してRNA分解酵素が結合するが、これら因子の助けを借りて、miRISCは標的RNAの不安定性を導く。標的mRNAの翻訳を阻害することも知られる。つまり、siRNAとmiRNAでは標的RNAの発現抑制の分子メカニズムが異なることを特徴とする。


=== PIWI interacting RNA ===
=== PIWI interacting RNA ===

案内メニュー