16,039
回編集
細 (→細胞性免疫応答) |
細 (→病理) |
||
81行目: | 81行目: | ||
脊椎動物の胸腺皮質上皮細胞cTECにはβ5tという新規な触媒サブユニットが特異的に発現している。そしてβ5tの組み込まれた(β1iとβ2iをパートナーとする)亜型酵素は、胸腺プロテアソーム(thymoproteasome)と呼ばれる<ref name=ref37><pubmed>17540904</pubmed></ref> <ref name=ref38><pubmed>20045355</pubmed></ref>。胸腺プロテアソームは、MHCクラスIに結合するリガンド(抗原エピトープ)の種類を変化させている。β5t欠損マウスではCD8+T細胞が減少し、リンパ球分化(様々なTCRを持った有用なCD8+T細胞のレパトア形成)に異常をきたし、胸腺プロテアソームが胸腺における“正の選択”を駆動する抗原ペプチドを生成している(細胞レベルでの自己と非自己の識別)<ref name=ref39><pubmed>19935803</pubmed></ref>。このように免疫型(免疫/胸腺)プロテアソームの遺伝子は、進化的には適応免疫の誕生と同時期に獲得している<ref name=ref28 /> <ref name=ref40><pubmed>21748441</pubmed></ref>。 | 脊椎動物の胸腺皮質上皮細胞cTECにはβ5tという新規な触媒サブユニットが特異的に発現している。そしてβ5tの組み込まれた(β1iとβ2iをパートナーとする)亜型酵素は、胸腺プロテアソーム(thymoproteasome)と呼ばれる<ref name=ref37><pubmed>17540904</pubmed></ref> <ref name=ref38><pubmed>20045355</pubmed></ref>。胸腺プロテアソームは、MHCクラスIに結合するリガンド(抗原エピトープ)の種類を変化させている。β5t欠損マウスではCD8+T細胞が減少し、リンパ球分化(様々なTCRを持った有用なCD8+T細胞のレパトア形成)に異常をきたし、胸腺プロテアソームが胸腺における“正の選択”を駆動する抗原ペプチドを生成している(細胞レベルでの自己と非自己の識別)<ref name=ref39><pubmed>19935803</pubmed></ref>。このように免疫型(免疫/胸腺)プロテアソームの遺伝子は、進化的には適応免疫の誕生と同時期に獲得している<ref name=ref28 /> <ref name=ref40><pubmed>21748441</pubmed></ref>。 | ||
== | ===老化と神経変性疾患=== | ||
[[image:プロテオソーム6.jpg|thumb|350px|'''図6.プロテアソーム分子集合因子PAC1の中枢神経系特異的欠損マウス'''<br>20Sプロテアソーム(αリング)の形成に必須な分子集合因子PAC1(図4参照)の条件的ノックアウトマウスをNestin-Creトランスジェニックマウス を交配させたマウスの生後3週間後の行動動態。詳細は本文及び文献<ref name=ref21 />参照。]] | [[image:プロテオソーム6.jpg|thumb|350px|'''図6.プロテアソーム分子集合因子PAC1の中枢神経系特異的欠損マウス'''<br>20Sプロテアソーム(αリング)の形成に必須な分子集合因子PAC1(図4参照)の条件的ノックアウトマウスをNestin-Creトランスジェニックマウス を交配させたマウスの生後3週間後の行動動態。詳細は本文及び文献<ref name=ref21 />参照。]] | ||
[[image:プロテオソーム7.jpg|thumb|350px|'''図7.PINK1/Parkin依存的な“ミトコンドリア品質管理”仮説のモデル図'''<br>詳細は本文参照。]] | [[image:プロテオソーム7.jpg|thumb|350px|'''図7.PINK1/Parkin依存的な“ミトコンドリア品質管理”仮説のモデル図'''<br>詳細は本文参照。]] | ||
一般にエイジング(老化)と共にプロテアソームの機能が低下するとの報告は、数多くある<ref name=ref41><pubmed>21587205</pubmed></ref> | 老化は、様々な神経変性疾患における最大のリスク要因として挙げられている。 | ||
一般にエイジング(老化)と共にプロテアソームの機能が低下するとの報告は、数多くある<ref name=ref41><pubmed>21587205</pubmed></ref>が、実際にはプロテアソームの機能評価は必ずしも容易でなく、それらの信憑性には疑義がもたれていた。多くの場合、蛍光合成基質を用いたペプチダーゼ活性を指標とした報告であるが、これらの実験値が真にこの酵素の細胞内での機能レベルを正確に反映していることの保証はないからである。ところが最近、ハエを用いた遺伝学的スクリーンから老化に依存したニューロンのproteotoxity(異常タンパク質の蓄積による細胞障害)を抑圧する遺伝子としてプロテアソームのRPサブユニット(Rpn11)が分離され、26Sプロテアソームの障害を起因としたプロテアソーム活性の低下が明らかとなった<ref name=ref42><pubmed>19075009</pubmed></ref>。この結果は、プロテアソームの機能破綻が寿命の短縮に寄与していることを直接的に示しており、エイジングにおけるプロテアソームの役割の重要性が具体的に示唆された。 | |||
通常、活発に分裂している細胞のサイトゾルや核に蓄積した異常タンパク質(アンフォールド/ミスフォールドした変異タンパク質)は、細胞増殖によってクリアランス(浄化)できるが、非分裂細胞であるニューロンにおいては、それらを処理できないために、タンパク質の品質管理(不要タンパク質の処理)が細胞の生存に不可欠である<ref name=ref43><pubmed>17051204</pubmed></ref> <ref name=ref44><pubmed>14685250</pubmed></ref>。興味深いことにKopitoらは、細胞内に異常タンパク質を強制発現させると、26Sプロテアソームがそれらを処理できずに活性の低下を引き起こし<ref name=ref45><pubmed>11375494</pubmed></ref>、蓄積した異常タンパク質が凝集しアグレゾーム(様々な神経変性疾患・患者脳の残存ニューロンに同定されている封入体と類似の凝集構造体)を形成することを示した<ref name=ref46><pubmed>11121744</pubmed></ref>。この結果は、プロテアソームの機能減弱と神経変性の関連性を示唆している。 | |||
===プロテアソーム阻害と神経細胞死=== | |||
McNaughtらはプロテアソーム阻害剤を直接マウスの小脳に注入してパーキンソン病(PD)と類似の症状を引き起こすことを報告し、プロテアソームの抑制とニューロン死の直接的な関係を示唆した<ref name=ref47><pubmed>15480836</pubmed></ref>。この方法は“McNaughtの方法”として脚光を浴びたが、その後、複数のグループが追試実験を実施したが、成功と失敗が相半ばして再現性が保証されず、この手法に関して決定的な結論が得られていない<ref name=ref48><pubmed>20061621</pubmed></ref>。 | |||
しかしごく最近、生後間もないマウスへのプロテアソーム阻害剤の長期間・連続投与によって神経変性が誘導されることが報告され、脚光を浴びている<ref name=ref49><pubmed>22174927</pubmed></ref>。一方、MayerらはプロテアソームRPを構成するATPaseサブユニットRpt2を脳において条件的にノックアウトすると、ユビキチン陽性のLewy body様の封入体が蓄積すると共に神経変性のトリガーを引くことが出来ることを報告した<ref name=ref50><pubmed>18701681</pubmed></ref>。われわれも20Sプロテアソームの分子集合因子PAC1をマウス・中枢神経系で欠損させてニューロンのプロテアソームレベルを持続的に低下させると、小脳変性を誘発して神経変性疾患様の症状に陥ることを見出した(図6)。これらの結果は、プロテアソームが神経細胞の恒常性維持に必須であることを遺伝学的に証明したと考えられる<ref name=ref21 />。 | |||
一方、多くの神経変性疾患の患者に観察される封入体のほとんどが抗ユビキチン抗体で濃染されること<ref name=ref51><pubmed>3029875</pubmed></ref>から、UPSの破綻が神経変性疾患の発症原因であるとの主張が華々しく展開された<ref name=ref52><pubmed>9881849</pubmed></ref> | 一方、多くの神経変性疾患の患者に観察される封入体のほとんどが抗ユビキチン抗体で濃染されること<ref name=ref51><pubmed>3029875</pubmed></ref>から、UPSの破綻が神経変性疾患の発症原因であるとの主張が華々しく展開された<ref name=ref52><pubmed>9881849</pubmed></ref>が、発症に直接的に関わることを示唆する結果は、長い間得られなかった。しかし、1998年、ユビキチン系の酵素であるパーキンが常染色体劣性若年性PD(ARJP)の原因遺伝子であることが同定<ref name=ref53><pubmed>9560156</pubmed></ref>され、次いで、2000年、パーキンがE3リガーゼをコードしていることが判明したこと<ref name=ref54><pubmed>10888878</pubmed></ref>から、UPSの破綻と神経変性疾患の関係が全世界で注目されるようになった。即ち、パーキンの標的分子がドーパミンニューロンに蓄積し、細胞死を誘導するという単純な図式が現実味を帯びてきたのである。しかし、爾来10年余、数多くのパーキン基質の同定に関する報告が洪水のように発表されてきたが、ARJPの発症機構を合理的に説明することは、困難を極めた。その後、パーキン研究は意外な展開を見せた。 | ||
不良なミトコンドリア(Mt)の累積は、活性酸素(ROS)を増産させ、DNA・タンパク質・脂質などを修飾して細胞障害を引き起こす。自立的な増殖が可能なMtの品質管理(不良品の処理)は、細胞分裂によって損傷Mtを浄化(クリアランス)できないニューロンなどの非分裂細胞にとっては、健康を維持するために必須である。実際、PDにおけるMtの機能異常(呼吸鎖の低下やMtDNAの欠失など)の報告は、この10年余、集積の一途を辿っている<ref name=ref55><pubmed>16495942</pubmed></ref>。従ってMtの良・不良をモニター(監視)することは、ニューロンが健全に活動するために不可欠である。これらの知見を受けて最近、Mtの品質管理の研究が、国内外で急速に進展している。Youleらやわれわれは若年性に発症する常染色体劣性遺伝性パーキンソン病の原因遺伝子産物であるPINK1(セリン/スレオニン型タンパク質リン酸化酵素)と Parkin(ユビキチン連結酵素)に着目し,これらのMt品質管理における役割を明らかにすることで,PDの発症機構解明に挑んできた<ref name=ref56><pubmed>19029340</pubmed></ref> <ref name=ref57><pubmed>20404107</pubmed></ref>。即ち、通常Mt外膜局在型のPINK1は不安定(健常なMtにおいては、PARL酵素とプロテアソーム系による恒常的な分解を受けている)であるが、膜電位が低下すると、これらの分解系から免れて外膜上に蓄積する。蓄積したPINK1はサイトゾルの不活性型Parkinを損傷Mtに移行・活性型に変換させる。即ちPINK1はParkinの損傷Mtへのリクルート因子として作用する。その結果、複数のMt外膜タンパク質がユビキチン化されると、これが引き金となってプロテアソームによる損傷Mtの消化及び選択的なオートファジーによる分解(Mitophagy)を受け、不良Mtは除去される(詳細は、オートファジーの項参照)<ref name=ref58><pubmed>21179058</pubmed></ref>。言い換えると、PINK1/Parkin はMtを破壊する“死神”であり、PINK1/Parkinが常に働いているとMtは次々と分解されて細胞は生存できないが、この経路は膜電位が低下した時のみに発動するように巧妙に制御されているので、損傷Mtだけが細胞から除去されることになる。この品質管理が適切に行われずにニューロン内に異常Mtが蓄積すると、ドーパミンニューロンの変性を引き起こしPDが発症すると想定される(図7)。このスキームにおける核心は、不良Mtのモニタリングであり、その機序としてYouleらは、膜電位依存的なPINK1の(PARLが局在する)Mt内膜への輸送仮説を提案しており、その骨子は「膜電位が低下するとPINK1の内膜への輸送が障害されてPINK1が外膜に蓄積する」ことである<ref name=ref59><pubmed>21115803</pubmed></ref>。一方われわれは膜電位依存的な不活性型PINK1の自己リン酸化による活性化が不良Mtを感知するもう一つのキーメカニズムであることを突き止めた(尾勝ら、論文投稿中)。現在「PINK1 と Parkin が協調して不良Mtの選択的なクリアランスに導く仕組み」の破綻が、PDの発症機構の一翼を担っているメカニズムであることは、確実な情勢となってきつつある。 | 不良なミトコンドリア(Mt)の累積は、活性酸素(ROS)を増産させ、DNA・タンパク質・脂質などを修飾して細胞障害を引き起こす。自立的な増殖が可能なMtの品質管理(不良品の処理)は、細胞分裂によって損傷Mtを浄化(クリアランス)できないニューロンなどの非分裂細胞にとっては、健康を維持するために必須である。実際、PDにおけるMtの機能異常(呼吸鎖の低下やMtDNAの欠失など)の報告は、この10年余、集積の一途を辿っている<ref name=ref55><pubmed>16495942</pubmed></ref>。従ってMtの良・不良をモニター(監視)することは、ニューロンが健全に活動するために不可欠である。これらの知見を受けて最近、Mtの品質管理の研究が、国内外で急速に進展している。Youleらやわれわれは若年性に発症する常染色体劣性遺伝性パーキンソン病の原因遺伝子産物であるPINK1(セリン/スレオニン型タンパク質リン酸化酵素)と Parkin(ユビキチン連結酵素)に着目し,これらのMt品質管理における役割を明らかにすることで,PDの発症機構解明に挑んできた<ref name=ref56><pubmed>19029340</pubmed></ref> <ref name=ref57><pubmed>20404107</pubmed></ref>。即ち、通常Mt外膜局在型のPINK1は不安定(健常なMtにおいては、PARL酵素とプロテアソーム系による恒常的な分解を受けている)であるが、膜電位が低下すると、これらの分解系から免れて外膜上に蓄積する。蓄積したPINK1はサイトゾルの不活性型Parkinを損傷Mtに移行・活性型に変換させる。即ちPINK1はParkinの損傷Mtへのリクルート因子として作用する。その結果、複数のMt外膜タンパク質がユビキチン化されると、これが引き金となってプロテアソームによる損傷Mtの消化及び選択的なオートファジーによる分解(Mitophagy)を受け、不良Mtは除去される(詳細は、オートファジーの項参照)<ref name=ref58><pubmed>21179058</pubmed></ref>。言い換えると、PINK1/Parkin はMtを破壊する“死神”であり、PINK1/Parkinが常に働いているとMtは次々と分解されて細胞は生存できないが、この経路は膜電位が低下した時のみに発動するように巧妙に制御されているので、損傷Mtだけが細胞から除去されることになる。この品質管理が適切に行われずにニューロン内に異常Mtが蓄積すると、ドーパミンニューロンの変性を引き起こしPDが発症すると想定される(図7)。このスキームにおける核心は、不良Mtのモニタリングであり、その機序としてYouleらは、膜電位依存的なPINK1の(PARLが局在する)Mt内膜への輸送仮説を提案しており、その骨子は「膜電位が低下するとPINK1の内膜への輸送が障害されてPINK1が外膜に蓄積する」ことである<ref name=ref59><pubmed>21115803</pubmed></ref>。一方われわれは膜電位依存的な不活性型PINK1の自己リン酸化による活性化が不良Mtを感知するもう一つのキーメカニズムであることを突き止めた(尾勝ら、論文投稿中)。現在「PINK1 と Parkin が協調して不良Mtの選択的なクリアランスに導く仕組み」の破綻が、PDの発症機構の一翼を担っているメカニズムであることは、確実な情勢となってきつつある。 |