41
回編集
Hiroshinishimaru (トーク | 投稿記録) 細編集の要約なし |
Hiroshinishimaru (トーク | 投稿記録) 細編集の要約なし |
||
10行目: | 10行目: | ||
</ref>。これは感覚入力や脊髄の上位中枢からの入力がなくても下部胸髄から腰髄に局在する神経回路だけでリズミックな関節の動きが生み出されることを示唆した初めての例である<ref name=ref2><pubmed> 18582502 </pubmed></ref>。 | </ref>。これは感覚入力や脊髄の上位中枢からの入力がなくても下部胸髄から腰髄に局在する神経回路だけでリズミックな関節の動きが生み出されることを示唆した初めての例である<ref name=ref2><pubmed> 18582502 </pubmed></ref>。 | ||
(Stuart and Hultborn 2008)。またCPGという用語が神経科学研究の論文において初めて用いられたのは、1960年代のWilsonとWymanによるバッタの飛翔の神経メカニズムに関する研究とされる<ref name=ref3><pubmed>14268949 </pubmed></ref>。哺乳類においては、咀嚼・吸啜の際の顎関節や舌の動き<ref name=ref4><pubmed>22342735</pubmed></ref>、呼吸の際の横隔膜や胸郭の動き<ref name=ref5><pubmed>12598679</pubmed></ref>、そして歩行の際の四肢の動き<ref name=ref6><b> Sten Grillner.</b> <br>Control of locomotion in bipeds, tetrapods, and fish. <br>In Handbook of Physiology: The Nervous System, 2, Motor Control, ed. V Brooks, 1981, pp. 1176–236. Bethesda, MA: Am.</ref>を制御するCPGが知られている。他の脊椎動物では魚類や両生類の泳動などを生み出している<ref name=ref7><pubmed>7571002</pubmed></ref><ref name=ref8> <pubmed>9928299</pubmed></ref>。また無脊椎動物においても上述の昆虫(バッタ)の飛翔の他、軟体動物(クリオネ)の泳動<ref name=ref9><pubmed>9928301</pubmed></ref>あるいは甲殻類(イセエビなど)の胃咀嚼器のリズミックな運動を制御する神経回路<ref name=ref10><pubmed>9928300</pubmed></ref>がCPGとして知られており、神経回路のしくみ、特に細胞レベルの機能解析が進んでいる。ここでは主に脊椎動物の移動運動(Locomotion)、特に哺乳類の歩行と魚類の泳動を生成するCPGについて述べる。 | (Stuart and Hultborn 2008)。またCPGという用語が神経科学研究の論文において初めて用いられたのは、1960年代のWilsonとWymanによるバッタの飛翔の神経メカニズムに関する研究とされる<ref name=ref3><pubmed>14268949 </pubmed></ref>。哺乳類においては、咀嚼・吸啜の際の顎関節や舌の動き<ref name=ref4><pubmed>22342735</pubmed></ref>、呼吸の際の横隔膜や胸郭の動き<ref name=ref5><pubmed>12598679</pubmed></ref>、そして歩行の際の四肢の動き<ref name=ref6><b> Sten Grillner.</b> <br>Control of locomotion in bipeds, tetrapods, and fish. <br>In Handbook of Physiology: The Nervous System, 2, Motor Control, ed. V Brooks, 1981, pp. 1176–236. Bethesda, MA: Am.</ref>を制御するCPGが知られている。他の脊椎動物では魚類や両生類の泳動などを生み出している<ref name=ref7><pubmed>7571002</pubmed></ref><ref name=ref8> <pubmed>9928299</pubmed></ref>。また無脊椎動物においても上述の昆虫(バッタ)の飛翔の他、軟体動物(クリオネ)の泳動<ref name=ref9><pubmed>9928301</pubmed></ref>あるいは甲殻類(イセエビなど)の胃咀嚼器のリズミックな運動を制御する神経回路<ref name=ref10><pubmed>9928300</pubmed></ref>がCPGとして知られており、神経回路のしくみ、特に細胞レベルの機能解析が進んでいる。ここでは主に脊椎動物の移動運動(Locomotion)、特に哺乳類の歩行と魚類の泳動を生成するCPGについて述べる。 | ||
== 基本的なしくみ== | == 基本的なしくみ== | ||
21行目: | 20行目: | ||
===ハーフセンター仮説=== | ===ハーフセンター仮説=== | ||
イギリスのGraham | イギリスのGraham Brownによって1910年代に提唱されスウェーデンのLundbergによって継承された説で、並列に出力する二つの回路が相互に抑制をすることによってそれぞれがリズミックで交代性のパターンを示すというものである(図2)<ref name=ref2><pubmed> 18582502 </pubmed></ref>。例えば、歩行CPGにおいては、屈筋と伸筋あるいは左右の脚のそれぞれパターンを形成する回路が独立して存在し、相互に抑制することによって、それぞれが交互に活動すると考えられている(図2)。この相互抑制を担うニューロンの有力な候補の一つとして、伸張反射の際に収縮した筋の拮抗筋を支配する運動ニューロンを抑制することが知られているIa抑制性ニューロンがある<ref name=ref16><pubmed>17936363</pubmed></ref>。 | ||
===構成ニューロンの性質=== | ===構成ニューロンの性質=== | ||
これまでに同定されたRenshaw細胞やIa抑制性ニューロンといった脊髄介在ニューロンに関してはその性質が詳細に調べられているが、それに加えて、最近、胎生期においてそれぞれのニューロンの前駆細胞が発現する転写因子の組み合わせによってニューロンが分類されている。この分類によって分けられたそれぞれのニューロン群はほぼ共通の神経伝達物質と軸索投射様式を持つことが明らかになっている<ref name=ref17><pubmed>19543221</pubmed></ref>。これまでに、遺伝子改変技術を用いて、これらのニューロン群の形成あるいは機能を阻害したマウスの脊髄歩行中枢の機能解析が行なわれており、これらのニューロン群の歩行運動の時空間パターン形成における役割が明らかになりつつある<ref name=ref18><pubmed>20889331</pubmed></ref> 。 | |||
==魚類の泳動のCPG== | ==魚類の泳動のCPG== | ||
===ヤツメウナギの泳動のCPG=== | ===ヤツメウナギの泳動のCPG=== | ||
ヤツメウナギの中枢神経系および脊髄の構造はより高次の脊椎動物と似ている点が多く、脊椎動物のなかでは、比較的単純な運動のCPGモデルとして機能解析が進んでいる。ヤツメウナギは100程度の体節からなる。左右の体節の筋は対応する脊髄髄節に局在する運動ニューロンに支配されている。一つの髄節には約 1000 | ヤツメウナギの中枢神経系および脊髄の構造はより高次の脊椎動物と似ている点が多く、脊椎動物のなかでは、比較的単純な運動のCPGモデルとして機能解析が進んでいる。ヤツメウナギは100程度の体節からなる。左右の体節の筋は対応する脊髄髄節に局在する運動ニューロンに支配されている。一つの髄節には約 1000 個のニューロンが局在しており、それぞれの脊髄髄節には同側の運動ニューロンを興奮させる興奮性ニューロン群(グルタミン酸作動性)と脊髄の反対側の回路を抑制する抑制性ニューロン群(グリシン作動性)からなる局所回路がある(図3)。この髄節ごとの局所回路が互いに結合し、動物が前進するときには吻側から尾側に興奮の波が伝えられる。これによって、吻尾方向に体節の左右の筋が交互に収縮し、S字状に体を動かすこととで推進力を生み出す<ref name=ref7><pubmed>7571002</pubmed></ref>。この際の リズミックな運動出力は、上述のグルタミン酸を介した興奮シナプス入力とグリシンを介した抑制性シナプス入力によって生み出されている(図4)。強い興奮性シナプス入力によってニューロンの細胞膜が脱分極し発火するとともにNMDA型グルタミン酸受容体および電位依存性L型カルシウムチャンネルが活性化され、カルシウムイオンが細胞内に流入する。この細胞内カルシウムイオン濃度の上昇が、カルシウムイオン依存性カリウムチャンネルを活性化し、細胞膜は再分極し始める。そして抑制性シナプス入力によってニューロンの発火が抑制される<ref name=ref7><pubmed>7571002</pubmed></ref>。 | ||
===ゼブラフィッシュの泳動CPG研究=== | ===ゼブラフィッシュの泳動CPG研究=== | ||
最近、運動や行動の神経機構の解析のモデル動物としてインド原産の熱帯魚のゼブラフィッシュが脚光を浴びている<ref name=ref19><pubmed>21749961</pubmed></ref> 。特に泳動の神経回路では、体が半透明の幼生を用いて遺伝学・分子生物学・電気生理学そして最近は光生理学を駆使して、回路を構成するニューロンの同定と結合様式が解明されつつある<ref name=ref19><pubmed>20970321 </pubmed></ref> 。 | |||
==関連項目== | ==関連項目== | ||
脊髄介在ニューロン | *[[脊髄介在ニューロン]] | ||
呼吸中枢 | *[[呼吸中枢]] | ||
NMDA型グルタミン酸受容体 | *[[NMDA型グルタミン酸受容体]] | ||
参考文献 | ==参考文献== | ||
<references/> | <references/> | ||
(執筆者:西丸広史 担当編集委員:伊佐正) | (執筆者:西丸広史 担当編集委員:伊佐正) |
回編集