16,040
回編集
細編集の要約なし |
細編集の要約なし |
||
12行目: | 12行目: | ||
[[image:図3 免疫組織化学.jpg|thumb|350px|'''図3.酵素抗体免疫電顕法(左)、銀増感包埋前免疫電顕法(右)''']] | [[image:図3 免疫組織化学.jpg|thumb|350px|'''図3.酵素抗体免疫電顕法(左)、銀増感包埋前免疫電顕法(右)''']] | ||
==免疫組織化学法とは== | |||
免疫組織化学法は、特定の抗原antigenに結合する抗体antibodyとの抗原抗体反応を利用して、抗原物質の局在やそれを発現する細胞要素を可視化する組織化学法を指す。特に、培養細胞などの単離細胞を染色する方法を免疫細胞化学法immunocytochemistryとして呼び分ける場合、免疫組織化学法は組織切片や個体全体を染色する方法の意味を持つ。 | 免疫組織化学法は、特定の抗原antigenに結合する抗体antibodyとの抗原抗体反応を利用して、抗原物質の局在やそれを発現する細胞要素を可視化する組織化学法を指す。特に、培養細胞などの単離細胞を染色する方法を免疫細胞化学法immunocytochemistryとして呼び分ける場合、免疫組織化学法は組織切片や個体全体を染色する方法の意味を持つ。 | ||
==基本的原理== | |||
まずタンパク質などの分子を抗原として結合する1次抗体primary antibodyを用いて、細胞や組織切片上で抗原抗体反応を行う。次に、レポーター分子を結合した2次抗体secondary antibodyを、1次抗体に結合させる(図1を参照)。レポーターが蛍光物質であれば蛍光顕微鏡や共焦点レーザー顕微鏡で蛍光を検出する蛍光抗体法immunofluorescenceとなり、レポーターが酵素であれば酵素組織化学で発色(発光)させ光学顕微鏡で反応部位を観察する酵素抗体法immunoenzyme methodとなる(図2)。また、レポーターが重金属であれば電子顕微鏡で観察できるようになり、免疫電顕法immunoelectron microscopyとよぶ(図3)。その分子を発現する細胞組織の同定や、抗原を有する細胞の形態を観察する方法として、最も汎用性に富む組織化学研究手法である。 | |||
==それぞれの検出法の利点== | |||
蛍光抗体法の利点は、異なる励起波長の蛍光物質(FITC,Cy3,Cy5、Alexaなど)をレポーターとすることにより複数の分子の同時検出(多重染色)が容易にできることである。その際、使用する1次抗体を作成した動物種が異なっていることが必要条件となる。酵素抗体法、特にペルオキシダーゼを利用した酵素抗体法の利点は、光学顕微鏡と電子顕微鏡の両方で検出が可能であることと、検出感度が高いことである。しかし、酵素反応物が拡散し周囲に沈着するため、電子顕微鏡レベルの酵素抗体法では、正確に抗原存在部位を特定することはできない。これを克服する免疫電顕法は、非拡散性の金属粒子をレポーターとした金コロイド免疫電顕法や銀増感免疫電顕法であるが、感度の点では酵素抗体法に劣る。免疫組織化学を行うにあたっては、目的に応じてどの方法を選択するのがよいのか、どの方法を組み合わせるとゴールに到達できるのかを、予め検討しておくことが重要である。 | 蛍光抗体法の利点は、異なる励起波長の蛍光物質(FITC,Cy3,Cy5、Alexaなど)をレポーターとすることにより複数の分子の同時検出(多重染色)が容易にできることである。その際、使用する1次抗体を作成した動物種が異なっていることが必要条件となる。酵素抗体法、特にペルオキシダーゼを利用した酵素抗体法の利点は、光学顕微鏡と電子顕微鏡の両方で検出が可能であることと、検出感度が高いことである。しかし、酵素反応物が拡散し周囲に沈着するため、電子顕微鏡レベルの酵素抗体法では、正確に抗原存在部位を特定することはできない。これを克服する免疫電顕法は、非拡散性の金属粒子をレポーターとした金コロイド免疫電顕法や銀増感免疫電顕法であるが、感度の点では酵素抗体法に劣る。免疫組織化学を行うにあたっては、目的に応じてどの方法を選択するのがよいのか、どの方法を組み合わせるとゴールに到達できるのかを、予め検討しておくことが重要である。 | ||
==関連項目== | |||
*[[In situハイブリダイゼーション法]] | |||
==参考文献== | |||
<references /> |