「免疫グロブリンスーパーファミリー」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
1行目: 1行目:
<div align="right"> 
<font size="+1">[http://researchmap.jp/yfurutani 古谷 裕]、[http://researchmap.jp/yoshihiroyoshihara 吉原 良浩]</font><br>
''独立行政法人理化学研究所 脳科学総合研究センター''<br>
DOI [[XXXX]]/XXXX 原稿受付日:2012年8月15日 原稿完成日:2012年9月26日<br>
担当編集委員:[http://researchmap.jp/michisukeyuzaki 柚崎 通介](慶應義塾大学 医学部生理学)<br>
</div>
英語名: Immunoglobulin superfamily 独:Immungloblin-Superfamilie 仏:superfamille des immunoglobulines
英語名: Immunoglobulin superfamily 独:Immungloblin-Superfamilie 仏:superfamille des immunoglobulines


 [[免疫グロブリン様ドメイン]](Igドメイン)を分子内に有する多種多様なタンパク質群を総称して、免疫グロブリンスーパーファミリー(Immunoglobulin superfamily: IgSF)と呼ぶ。免疫反応において抗体分子([[wikipedia:ja:抗体|免疫グロブリン]])のIgドメインが抗原の認識と結合を司るように、多くのIgSF分子群はそれらのIgドメインを介して他の分子との接着や認識を行っている。IgSF分子群は神経系のみならず、[[wikipedia:ja:免疫系|免疫系]]や他の生体システムにおいても、[[細胞接着|細胞間の接着]]や認識などの重要な役割を担っている。多くのIgSF分子群は[[膜貫通領域]]あるいは[[GPIアンカー]]構造によって[[細胞膜|細胞形質膜]]に局在している。神経系においてIgSF分子群は、[[細胞外マトリックス]]タンパク質群や他の[[細胞接着分子]]群などと結合して、[[軸索]]の伸長・標的領域への[[ガイダンス]]、[[樹状突起]]の形成、さらには[[シナプス]]構造の[[シナプス形成|形成]]・成熟・[[シナプス可塑性|可塑的変化]]など、様々な神経発達過程に関与している。IgSF分子群の細胞内領域には多様な機能ドメイン(酵素活性ドメイン、特異的分子結合ドメインなど)が存在し、細胞外でのリガンド分子との結合情報を細胞内シグナルに変換する働きや、[[アクチン]]などの[[細胞骨格]]系と相互作用して[[神経突起]]の形成を促進するはたらきを持っている。IgSF分子群は[[wikipedia:ja:プラナリア|プラナリア]]から[[wikipedia:ja:ヒト|ヒト]]に至るほとんどすべての動物種において存在し、最も多様な分子ファミリーの1つを形成している。
{{box|text=
 [[免疫グロブリン様ドメイン]](Igドメイン)を分子内に有する多種多様なタンパク質群を総称して、免疫グロブリンスーパーファミリー(Immunoglobulin superfamily: IgSF)と呼ぶ。免疫反応において抗体分子([[wikipedia:ja:抗体|免疫グロブリン]])のIgドメインが抗原の認識と結合を司るように、多くのIgSF分子群はそれらのIgドメインを介して他の分子との接着や認識を行っている。IgSF分子群は神経系のみならず、[[wikipedia:ja:免疫系|免疫系]]や他の生体システムにおいても、[[細胞接着|細胞間の接着]]や認識などの重要な役割を担っている。多くのIgSF分子群は[[膜貫通領域]]あるいは[[GPIアンカー]]構造によって[[細胞膜|細胞形質膜]]に局在している。神経系においてIgSF分子群は、[[細胞外マトリックス]]タンパク質群や他の[[細胞接着分子]]群などと結合して、[[軸索]]の伸長・標的領域への[[ガイダンス]]、[[樹状突起]]の形成、さらには[[シナプス]]構造の[[シナプス形成|形成]]・成熟・[[シナプス可塑性|可塑的変化]]など、様々な神経発達過程に関与している。IgSF分子群の細胞内領域には多様な機能ドメイン(酵素活性ドメイン、特異的分子結合ドメインなど)が存在し、細胞外でのリガンド分子との結合情報を細胞内シグナルに変換する働きや、[[アクチン]]などの[[細胞骨格]]系と相互作用して[[神経突起]]の形成を促進するはたらきを持っている。IgSF分子群は[[wikipedia:ja:プラナリア|プラナリア]]から[[wikipedia:ja:ヒト|ヒト]]に至るほとんどすべての動物種において存在し、最も多様な分子ファミリーの1つを形成している。
}}


== 構造  ==
== 構造  ==
14行目: 23行目:
*グループⅣ:細胞外領域に[[トロンボスポンジン様ドメイン]]、[[Semaドメイン]]、[[EGFドメイン]]、[[ロイシンンリッチリピート]] (LRR)、[[MAMドメイン]]などを含む分子群。  
*グループⅣ:細胞外領域に[[トロンボスポンジン様ドメイン]]、[[Semaドメイン]]、[[EGFドメイン]]、[[ロイシンンリッチリピート]] (LRR)、[[MAMドメイン]]などを含む分子群。  


 これらIgSF分子群の大部分はアミノ末端のシグナルペプチドと1つの膜貫通領域を有するI型膜タンパク質である。一方、一部のIgSF分子群はGPIアンカー構造を介して細胞膜の[[リン脂質]]に結合している(図2:→)。[[NCAM]]や[[OCAM]]では、それぞれ1つの遺伝子からの[[wikipedia:ja:選択的スプライシング|選択的スプライシング]]によって膜貫通型とGPIアンカー型の2つのアイソフォームが神経細胞のタイプ特異的あるいは発達時期特異的に発現する。GPIアンカー型タンパク質は細胞膜の[[ラフト]]構造に局在し、膜貫通型タンパク質と比較して細胞膜表面での移動の自由度が高い。またGPIアンカー型IgSF分子群は、[[wikipedia:ja:ホスホリパーゼ|ホスホリパーゼD]]を介したGPIアンカー部分の切断によって細胞外領域が膜から遊離され、分泌型リガンドとしての受容体への結合あるいは[[ドミナントネガティブ]]分子としての接着阻害などの特徴的な機能を発現することがある。  
 これらIgSF分子群の大部分はアミノ末端のシグナルペプチドと1つの膜貫通領域を有するI型膜タンパク質である。一方、一部のIgSF分子群はGPIアンカー構造を介して[[細胞膜]]の[[リン脂質]]に結合している(図2:→)。[[NCAM]]や[[OCAM]]では、それぞれ1つの遺伝子からの[[wikipedia:ja:選択的スプライシング|選択的スプライシング]]によって膜貫通型とGPIアンカー型の2つのアイソフォームが神経細胞のタイプ特異的あるいは発達時期特異的に発現する。GPIアンカー型タンパク質は細胞膜の[[ラフト]]構造に局在し、膜貫通型タンパク質と比較して細胞膜表面での移動の自由度が高い。またGPIアンカー型IgSF分子群は、[[wikipedia:ja:ホスホリパーゼ|ホスホリパーゼD]]を介したGPIアンカー部分の切断によって細胞外領域が膜から遊離され、[[分泌]]型リガンドとしての受容体への結合あるいは[[ドミナントネガティブ]]分子としての接着阻害などの特徴的な機能を発現することがある。  


[[Image:Yutakafurutani fig 2.jpg|thumb|350px|'''図2.免疫グロブリンスーパーファミリー細胞接着分子の構造'''<br>Cys: Cysteine-rich domain, EGF: epidermal growth factor-like repeat, Kr: Kringle domain, LRR: leucine-rich repeat, MAM: meprin/A5/protein tyrosine phosphatase &mu; domain, Sema: semaphorin domain, TK: tyrosine kinase, TP: tyrosine phosphatase, TS: thrombospondin domain.]]
[[Image:Yutakafurutani fig 2.jpg|thumb|350px|'''図2.免疫グロブリンスーパーファミリー細胞接着分子の構造'''<br>Cys: Cysteine-rich domain, EGF: epidermal growth factor-like repeat, Kr: Kringle domain, LRR: leucine-rich repeat, MAM: meprin/A5/protein tyrosine phosphatase &mu; domain, Sema: semaphorin domain, TK: tyrosine kinase, TP: tyrosine phosphatase, TS: thrombospondin domain.]]
40行目: 49行目:
 脊髄の背側部に存在する交連神経細胞の軸索は、NgCAM及びアクソニン-1の作用によって束状化されながら、[[底板]](floor plate)から分泌される誘引因子[[ネトリン]](netrin)の濃度勾配に従って腹側方向へと伸長する。この時、ネトリンの受容体であるDCCが交連軸索に発現して機能している。次に、交連軸索に発現するアクソニン-1と底板に発現するNrCAMの相互作用によって、軸索の底板への侵入が起こる。
 脊髄の背側部に存在する交連神経細胞の軸索は、NgCAM及びアクソニン-1の作用によって束状化されながら、[[底板]](floor plate)から分泌される誘引因子[[ネトリン]](netrin)の濃度勾配に従って腹側方向へと伸長する。この時、ネトリンの受容体であるDCCが交連軸索に発現して機能している。次に、交連軸索に発現するアクソニン-1と底板に発現するNrCAMの相互作用によって、軸索の底板への侵入が起こる。


 いったん正中線を横切って反対側へと到達した軸索は、吻側方向へと脳へと向けて伸長し、二度と同側に戻ることはない。これは底板から分泌される軸索反発因子[[スリット]](slit)と軸索に発現するその受容体Roboの相互作用によるものである<ref><pubmed>7758116</pubmed></ref><ref><pubmed>17029581</pubmed></ref><ref><pubmed>9568394</pubmed></ref>。&nbsp;  
 いったん正中線を横切って反対側へと到達した軸索は、吻側方向へと脳へと向けて伸長し、二度と同側に戻ることはない。これは底板から分泌される軸索反発因子[[スリット]](slit)と軸索に発現するその受容体[[ROBO|Robo]]の相互作用によるものである<ref><pubmed>7758116</pubmed></ref><ref><pubmed>17029581</pubmed></ref><ref><pubmed>9568394</pubmed></ref>。&nbsp;  


 軸索ガイダンスにおいてIgSF分子群が機能する別の例として、[[嗅上皮]]から[[嗅球]]へと至る[[一次嗅覚神経]]回路の構築メカニズムが挙げられる。特定の[[嗅覚受容体]]を発現する嗅細胞群は、それらの軸索を嗅球の同じ[[糸球体]]へと集束させる。これは脳における匂い情報コーディングおよびプロセシングの基盤となっており、[[Kirrel 2]]、[[Kirrel 3]]、[[BIG-2]]([[コンタクチン4]])などのIgSF分子群が標的糸球体への軸索集束過程において重要な役割を果たしている<ref><pubmed>18367085</pubmed></ref><ref><pubmed>17129788</pubmed></ref>。  
 軸索ガイダンスにおいてIgSF分子群が機能する別の例として、[[嗅上皮]]から[[嗅球]]へと至る[[一次嗅覚神経]]回路の構築メカニズムが挙げられる。特定の[[嗅覚受容体]]を発現する嗅細胞群は、それらの軸索を嗅球の同じ[[糸球体]]へと集束させる。これは脳における匂い情報コーディングおよびプロセシングの基盤となっており、[[Kirrel 2]]、[[Kirrel 3]]、[[BIG-2]]([[コンタクチン4]])などのIgSF分子群が標的糸球体への軸索集束過程において重要な役割を果たしている<ref><pubmed>18367085</pubmed></ref><ref><pubmed>17129788</pubmed></ref>。  
52行目: 61行目:
 発達期において多くの神経細胞の樹状突起には、まるで薔薇の棘のように細く、長い突起構造が観察される。これは樹状突起[[フィロポディア]](dendritic filopodia)と呼ばれ、その後[[スパイン]]へと形態的かつ機能的に成熟して、シナプスの形成へと至る。[[テレンセファリン]](Telencephalin; ICAM-5)は[[wikipedia:ja:哺乳類|哺乳類]][[終脳]]の神経細胞特異的な発現かつ樹状突起選択的な局在を示すIgSF分子である。テレンセファリンは、樹状突起フィロポディアに豊富に存在しており、樹状突起フィロポディアの形成及び維持を促進することで、スパインへの急速な成熟にブレーキをかけて[[臨界期]]を保つというユニークな機能を現す(図5)<ref><pubmed>21804538</pubmed></ref><ref><pubmed>17699668</pubmed></ref><ref><pubmed>16467526</pubmed></ref>。    
 発達期において多くの神経細胞の樹状突起には、まるで薔薇の棘のように細く、長い突起構造が観察される。これは樹状突起[[フィロポディア]](dendritic filopodia)と呼ばれ、その後[[スパイン]]へと形態的かつ機能的に成熟して、シナプスの形成へと至る。[[テレンセファリン]](Telencephalin; ICAM-5)は[[wikipedia:ja:哺乳類|哺乳類]][[終脳]]の神経細胞特異的な発現かつ樹状突起選択的な局在を示すIgSF分子である。テレンセファリンは、樹状突起フィロポディアに豊富に存在しており、樹状突起フィロポディアの形成及び維持を促進することで、スパインへの急速な成熟にブレーキをかけて[[臨界期]]を保つというユニークな機能を現す(図5)<ref><pubmed>21804538</pubmed></ref><ref><pubmed>17699668</pubmed></ref><ref><pubmed>16467526</pubmed></ref>。    


 特異的シナプスの形成過程においても多種多様なIgSF分子群が重要な役割を果たしている。[[Necl-2]] ([[SynCAM 1]])は[[シナプス前部]]と[[シナプス後部|後部]]の両方に局在しており、ホモフィリックな''cis''結合及び''trans''結合によって多量体を形成して、興奮性シナプスの形成を促進している<ref><pubmed>21145003</pubmed></ref>。[[Dscam]], [[DscamL]], [[Sidekick-1]],[[Sidekick-2|-2]]は[[wikipedia:ja:ニワトリ|ニワトリ]]の[[網膜]]においてそれぞれ異なる[[介在神経細胞]]と網膜[[神経節細胞]]に発現しており、ホモフィリックな結合によってこれらの神経細胞間での特異的シナプス形成を制御している<ref><pubmed>18216854</pubmed></ref>。  
 特異的シナプスの形成過程においても多種多様なIgSF分子群が重要な役割を果たしている。[[Necl-2]] ([[SynCAM 1]])は[[シナプス前部]]と[[シナプス後部|後部]]の両方に局在しており、ホモフィリックな''cis''結合及び''trans''結合によって多量体を形成して、[[興奮性シナプス]]の形成を促進している<ref><pubmed>21145003</pubmed></ref>。[[Dscam]], [[DscamL]], [[Sidekick-1]],[[Sidekick-2|-2]]は[[wikipedia:ja:ニワトリ|ニワトリ]]の[[網膜]]においてそれぞれ異なる[[介在神経細胞]]と網膜[[神経節細胞]]に発現しており、ホモフィリックな結合によってこれらの神経細胞間での特異的シナプス形成を制御している<ref><pubmed>18216854</pubmed></ref>。  


 [[PTPδ]]はシナプス前部に局在しており、シナプス後部に局在する[[IL1RAPL1]]と、''trans''結合することによってシナプス形成を促進する。IL1RAPL1の遺伝子変異は非症候性[[精神遅滞]]や[[自閉症]]に関連している<ref><pubmed>21940441</pubmed></ref>。  
 [[PTPδ]]は[[シナプス前]]部に局在しており、シナプス後部に局在する[[IL1RAPL1]]と、''trans''結合することによってシナプス形成を促進する。IL1RAPL1の遺伝子変異は非症候性[[精神遅滞]]や[[自閉症]]に関連している<ref><pubmed>21940441</pubmed></ref>。  


 [[SALM]]は軸索伸長及びシナプス形成に関与しており、特にSALM5遺伝子は自閉症や家族性[[統合失調症]]への関連が示唆されている<ref><pubmed>21736948</pubmed></ref>。    
 [[SALM]]は軸索伸長及びシナプス形成に関与しており、特にSALM5遺伝子は自閉症や家族性[[統合失調症]]への関連が示唆されている<ref><pubmed>21736948</pubmed></ref>。    
68行目: 77行目:
== 参考文献  ==
== 参考文献  ==


<references />  
<references />
 
 
(執筆者:古谷 裕、吉原良浩 担当編集委員:柚崎通介)

案内メニュー