16,039
回編集
Takuyawatanabe (トーク | 投稿記録) 細 (→結合タンパク質) |
編集の要約なし |
||
18行目: | 18行目: | ||
{{box|text= | {{box|text= | ||
ニューレキシンはシナプス前末端に存在する1回膜貫通型タンパク質であり、シナプス後部の膜タンパク質であるニューロリギン(Neuroligin: NLGN)とシナプス間隙で結合し、シナプス構築や神経伝達物質の放出機構などに関わっている<ref name=ref1><pubmed>18923512</pubmed></ref>。多くのスプライス変異体が存在し、グルタミン酸作動性・GABA作動性神経シナプスの構築の選別に影響すると考えられている<ref name=ref2><pubmed>16624946</pubmed></ref> <ref name=ref3><pubmed>18006501</pubmed></ref>。また、自閉症や統合失調症の発症に関与していると考えられている<ref name=ref4><pubmed>17034946</pubmed></ref> <ref name=ref5><pubmed>21424692</pubmed></ref> <ref name=ref6><pubmed>22405623</pubmed></ref> <ref name=ref7><pubmed>19880096</pubmed></ref> <ref name=ref8><pubmed>21477380</pubmed></ref> 。 | |||
推奨英文総説<ref name=ref1 /> <ref name=ref9><pubmed>17275284</pubmed></ref> | 推奨英文総説<ref name=ref1 /> <ref name=ref9><pubmed>17275284</pubmed></ref> | ||
33行目: | 33行目: | ||
哺乳類ではNRXNは3つの遺伝子(NRXN1、2、3)から成り、プロモーターの違いから、長鎖のαNRXN(上流プロモーター)、短鎖のβNRXN(下流プロモーター)の2つのアイソフォームに転写される。従って、3つのαNRXN(1α、2α、3α)と3つのβNRXN(1β、2β、3β)からなる。さらに、αNRXNは選択的スプライシング部位を5つ[alternative splice site (SS)1から5]、βNRXNは2つ(SS4と5)有しており、3000以上のスプライス変異体が存在する<ref name=ref10><pubmed>16794786</pubmed></ref> <ref name=ref1 /> <ref><pubmed>20510934</pubmed></ref> <ref name=ref11><pubmed>12036300</pubmed></ref>。NRXNの選択的スプライシングは神経活動によって、調節されている<ref><pubmed>22196734</pubmed></ref>。αNRXNは細胞外側に6つのLNSドメイン[laminin, neurexin, sex-hormone binding protein (LNS)ドメインまたはLaminin G ドメイン]とLNSドメインを隔てる3つのEGF様ドメイン(epidermal growth factor-like ドメイン)を有している。一方、βNRXNのLNSドメインは一つである。両NRXNの細胞内C末端領域にはPDZドメイン[postsynaptic density (PSD) -95/ discs large/ zona-occludens-1ドメイン]結合部位を有する<ref name=ref9 /> <ref name=ref10 />(図1)。βNRXN の細胞外構造およびβNRXNとNLGN複合体の3次元構造が明らかとなっている<ref><pubmed>18093522</pubmed></ref>、(動画)。 | 哺乳類ではNRXNは3つの遺伝子(NRXN1、2、3)から成り、プロモーターの違いから、長鎖のαNRXN(上流プロモーター)、短鎖のβNRXN(下流プロモーター)の2つのアイソフォームに転写される。従って、3つのαNRXN(1α、2α、3α)と3つのβNRXN(1β、2β、3β)からなる。さらに、αNRXNは選択的スプライシング部位を5つ[alternative splice site (SS)1から5]、βNRXNは2つ(SS4と5)有しており、3000以上のスプライス変異体が存在する<ref name=ref10><pubmed>16794786</pubmed></ref> <ref name=ref1 /> <ref><pubmed>20510934</pubmed></ref> <ref name=ref11><pubmed>12036300</pubmed></ref>。NRXNの選択的スプライシングは神経活動によって、調節されている<ref><pubmed>22196734</pubmed></ref>。αNRXNは細胞外側に6つのLNSドメイン[laminin, neurexin, sex-hormone binding protein (LNS)ドメインまたはLaminin G ドメイン]とLNSドメインを隔てる3つのEGF様ドメイン(epidermal growth factor-like ドメイン)を有している。一方、βNRXNのLNSドメインは一つである。両NRXNの細胞内C末端領域にはPDZドメイン[postsynaptic density (PSD) -95/ discs large/ zona-occludens-1ドメイン]結合部位を有する<ref name=ref9 /> <ref name=ref10 />(図1)。βNRXN の細胞外構造およびβNRXNとNLGN複合体の3次元構造が明らかとなっている<ref><pubmed>18093522</pubmed></ref>、(動画)。 | ||
ショウジョウバエや[[線虫]]、ミツバチ、アメフラシなどの無脊椎動物においてもαNRXN遺伝子が同定されている<ref name=ref11 /> <ref><pubmed>18974885</pubmed></ref> <ref><pubmed>21555073</pubmed></ref>。また、線虫ではβNRXNも同定されている<ref><pubmed>21055481</pubmed></ref>。 | |||
== 結合タンパク質 == | == 結合タンパク質 == | ||
細胞外ドメインを介した結合タンパク質:これまでに5つのタンパク質 [NLGN、dystroglycan、neurexophilins、Leucine-rich repeat transmembrane neuronal proteins (LRRTMs)、Cbln]が同定されている<ref name=ref12><pubmed>7695896</pubmed></ref> <ref name=ref13><pubmed>11470830</pubmed></ref> <ref name=ref14><pubmed>8699246</pubmed></ref> <ref name=ref15><pubmed>20064387</pubmed></ref> <ref><pubmed>20064388</pubmed></ref> <ref><pubmed>20537373</pubmed></ref> <ref name=ref16><pubmed>21410790</pubmed></ref> | 細胞外ドメインを介した結合タンパク質:これまでに5つのタンパク質 [NLGN、dystroglycan、neurexophilins、Leucine-rich repeat transmembrane neuronal proteins (LRRTMs)、Cbln]が同定されている<ref name=ref12><pubmed>7695896</pubmed></ref> <ref name=ref13><pubmed>11470830</pubmed></ref> <ref name=ref14><pubmed>8699246</pubmed></ref> <ref name=ref15><pubmed>20064387</pubmed></ref> <ref><pubmed>20064388</pubmed></ref> <ref><pubmed>20537373</pubmed></ref> <ref name=ref16><pubmed>21410790</pubmed></ref>。NLGNとの結合において、NRXNのスプライス変異体は、細胞間の認識や接着ならびにシナプス構築などの過程に重要な役割を有していることが示されており、現在までにSS4の挿入の有無が結合選択性に影響することが報告されている([[ニューロリギン]]を参照のこと)。 | ||
βNRXN1(4-)(SS4非挿入体)は、splicing site B(SSB)の挿入の有無に関わらずNLGN1[NL1(-), NL1A, NL1B, NL1AB]ならびにNLGN2[NL2(-)とNL2A]と高親和性に結合するが、βNRXN1(4+)(SS4挿入体)のSSB挿入体NLGN1(NL1B, NL1AB)との結合親和性は低い(表1)<ref name=ref17><pubmed>16242404</pubmed></ref> <ref name=ref18><pubmed>18812509</pubmed></ref> <ref name=ref19><pubmed>16846852</pubmed></ref> <ref name=ref2 />。一方、αNRXNはSS4の有無に関わらずNLGN1-SSB挿入体とは結合しないが<ref name=ref17 />、αNRXNのLNS6ドメインのみではNLGN1-SSB挿入体と結合する<ref name=ref18 />。LRRTMsは、α-,βNRXN(4-)とのみ結合する<ref name=ref100><pubmed>20519524</pubmed></ref>。Cbln1とCbln2はα-,βNRXN(4+)と結合するが、NRXN(4-)とは結合しない<ref name=ref16 />。 | βNRXN1(4-)(SS4非挿入体)は、splicing site B(SSB)の挿入の有無に関わらずNLGN1[NL1(-), NL1A, NL1B, NL1AB]ならびにNLGN2[NL2(-)とNL2A]と高親和性に結合するが、βNRXN1(4+)(SS4挿入体)のSSB挿入体NLGN1(NL1B, NL1AB)との結合親和性は低い(表1)<ref name=ref17><pubmed>16242404</pubmed></ref> <ref name=ref18><pubmed>18812509</pubmed></ref> <ref name=ref19><pubmed>16846852</pubmed></ref> <ref name=ref2 />。一方、αNRXNはSS4の有無に関わらずNLGN1-SSB挿入体とは結合しないが<ref name=ref17 />、αNRXNのLNS6ドメインのみではNLGN1-SSB挿入体と結合する<ref name=ref18 />。LRRTMsは、α-,βNRXN(4-)とのみ結合する<ref name=ref100><pubmed>20519524</pubmed></ref>。Cbln1とCbln2はα-,βNRXN(4+)と結合するが、NRXN(4-)とは結合しない<ref name=ref16 />。 | ||
43行目: | 43行目: | ||
Dystroglycanはα-、βNRXNとスプライス変異体依存的に結合する<ref name=ref13 />。また、neurexophilinはαNRXNとスプライス変異体非依存的に結合する<ref name=ref14 /> <ref><pubmed>9856994</pubmed></ref>。 | Dystroglycanはα-、βNRXNとスプライス変異体依存的に結合する<ref name=ref13 />。また、neurexophilinはαNRXNとスプライス変異体非依存的に結合する<ref name=ref14 /> <ref><pubmed>9856994</pubmed></ref>。 | ||
細胞内ドメインを介した結合タンパク質:細胞内C末端領域のPDZドメイン結合部位を介し、[[シナプトタグミン]](synaptotagmin)<ref><pubmed>8439414</pubmed></ref>やCASK<ref><pubmed>8786425</pubmed></ref>などの[[シナプス前]]末端局在タンパク質と結合している。 | |||
{| class="wikitable" | {| class="wikitable" | ||
112行目: | 112行目: | ||
== 発現 == | == 発現 == | ||
NRXNは脳に高レベルで発現しており、[[海馬]]においては細胞種の違いによって異なるアイソフォームの発現が認められている(例えば、海馬[[CA1]][[錐体細胞]]と[[歯状回]]顆粒細胞ではNRXN3αの発現が認められないのに対して、介在細胞ではNRXN3αが高発現している)<ref name=ref12 />。また、脳以外の臓器にも発現しており、NRXN1(α, β)と3(α, β)のmRNAは心臓、肺、腎臓、胎盤にも発現している<ref name=ref20><pubmed>21048075</pubmed></ref> <ref><pubmed>12379233</pubmed></ref>。また、血管においてもNRXNの発現が認められている<ref name=ref21><pubmed>19926856</pubmed></ref>。 | |||
== 機能 == | == 機能 == | ||
119行目: | 119行目: | ||
[[image:図2興奮性シナプスにおけるNRXNとNLGNの結合模式図.jpg|thumb|330px|'''図2.興奮性シナプスにおけるNRXNとNLGNの結合模式図'''<br>NRXNとNLGNはシナプス前末端とシナプス後部間で結合している。NRXNとNLGNはそれぞれシナプス前末端とシナプス後部のシナプス局在分子と直接・間接的に結合している。]] | [[image:図2興奮性シナプスにおけるNRXNとNLGNの結合模式図.jpg|thumb|330px|'''図2.興奮性シナプスにおけるNRXNとNLGNの結合模式図'''<br>NRXNとNLGNはシナプス前末端とシナプス後部間で結合している。NRXNとNLGNはそれぞれシナプス前末端とシナプス後部のシナプス局在分子と直接・間接的に結合している。]] | ||
NRXNは主にシナプス前末端に局在し、シナプス後部に局在する結合タンパク質との相互作用により[[グルタミン酸]]作動性(興奮性)および[[GABA作動性]](抑制性)シナプスの形成・成熟・機能を制御していると考えられている。NRXNを強制発現させた株化細胞と[[初代培養神経]]細胞を共培養することにより、NRXNがシナプス後部の[[分化]]に果たす役割が明らかになっている。非神経細胞へのβNRXN強制発現は、共培養した神経細胞上の抑制性、[[興奮性シナプス]]後部の分化を誘導する。一方、αNRXNの強制発現は[[抑制性シナプス]]後部の分化を誘導する<ref><pubmed>15620359</pubmed></ref> <ref name=ref3 /> <ref><pubmed>15837930</pubmed></ref> <ref name=ref19 />。βNRXN(4+)は、興奮性シナプス後部タンパク質であるNLGN 1/3/4とPSD95のクラスター形成能を低下させるが、抑制性シナプス後部タンパク質であるNLGN2とgephyrinのクラスター形成能には影響しない<ref name=ref2 />。このことから、βNRXN のSS4挿入の有無は、興奮性・抑制性神経シナプスの構築の選別に影響すると考えられている。 | |||
NRXNとNLGNをシナプス前・後細胞にそれぞれ強制発現させた機能解析により、αNRXN1とNLGN2は機能的抑制性シナプス形成に重要であるが、βNRXN1とNLGN2の組み合わせは重要ではないことが示唆されている<ref><pubmed>23426688</pubmed></ref>。 | NRXNとNLGNをシナプス前・後細胞にそれぞれ強制発現させた機能解析により、αNRXN1とNLGN2は機能的抑制性シナプス形成に重要であるが、βNRXN1とNLGN2の組み合わせは重要ではないことが示唆されている<ref><pubmed>23426688</pubmed></ref>。 | ||
127行目: | 127行目: | ||
LRRTMはα-, βNRXN(4-)と結合し、興奮性シナプス形成を制御している<ref name=ref15 />。 | LRRTMはα-, βNRXN(4-)と結合し、興奮性シナプス形成を制御している<ref name=ref15 />。 | ||
αNRXNは[[Ca2+チャネル]]と共にシナプス伝達物質放出機構を調節することが示唆されている<ref name=ref22><pubmed>12827191</pubmed></ref>。 | |||
===血管=== | ===血管=== | ||
βNRXNに対する抗体の血管への付加は、血管新生を抑制する。また、[[ノルアドレナリン]]誘導血管収縮も減弱させており、血管平滑筋のβNRXNは[[CA2|Ca2]]+チャネル調節因子として血管緊張調整に関与しているようである<ref name=ref21 /> <ref><pubmed>21394644</pubmed></ref>。αNRXNの細胞外ドメインの類似断片は、受容体型チロシンキナーゼTie2を介して血管新生を促進する<ref><pubmed>23485462</pubmed></ref>。 | |||
===腎臓=== | ===腎臓=== | ||
136行目: | 136行目: | ||
== NRXN類似タンパク質 == | == NRXN類似タンパク質 == | ||
CASPRs(contactin-associated proteins: | CASPRs(contactin-associated proteins: NRXN4としても知られている)はαNRXNと類似の構造を有するが、αNRXNには無い細胞外ドメインを有している。NRXNの様に[[細胞接着分子]]として機能している<ref><pubmed>9786343</pubmed></ref>。また、CASPR1はAMPA型グルタミン酸受容体の輸送を調節することが報告されている<ref><pubmed>22223644</pubmed></ref>。また、CASPR2の遺伝子変異は自閉症と関連していると考えられている<ref><pubmed>22365836</pubmed></ref>。 | ||
== 疾患との関連 == | == 疾患との関連 == | ||
150行目: | 150行目: | ||
===αNRXN triple Knockoutマウス=== | ===αNRXN triple Knockoutマウス=== | ||
呼吸器系に障害が認められる。KOマウスは[[GABA]]作動性[[神経終末]]の数を減少させるが、グルタミン酸作動性神経終末には変化を示さない。さらに、KOマウスはCa2+チャネルの機能低下が原因となり、神経伝達物質放出の障害を示すことが報告されている<ref name=ref22 />。 | |||
== 参考文献 == | == 参考文献 == | ||
<references /> | <references /> |