16,039
回編集
細編集の要約なし |
|||
18行目: | 18行目: | ||
英語名:synaptotagmin | 英語名:synaptotagmin | ||
シナプトタグミンは[[シナプス小胞]]上に豊富に存在する[[カルシウム]]・[[リン脂質]]結合分子として同定された[[wikipedia:ja:膜タンパク質|膜タンパク質]]である<ref name=ref1><pubmed>2333096</pubmed></ref>。シナプトタグミンは[[wikipedia:ja:植物|植物]]・[[wikipedia:ja:動物|動物]]を含め様々な生物種に存在することが現在では知られており、[[wikipedia:ja:ヒト|ヒト]]や[[マウス]]では17種類のアイソフォームの存在が報告されている<ref name=ref2><pubmed>12801916</pubmed></ref><ref name=ref3><pubmed>20078875</pubmed></ref>。N末端側に[[wikipedia:ja:膜貫通領域|膜貫通領域]]を1カ所持ち、C末端側の[[wikipedia:ja:細胞質|細胞質]]領域に存在する二つのC2領域でカルシウムイオンやリン脂質を結合することが知られている<ref name=ref4><pubmed>15217342</pubmed></ref><ref name=ref5>'''Fukuda, M.'''<br>Molecular mechanism of Exocytosis.<br>Landes Bioscience, Austin, TX, (2006) 42-61</ref><ref name=ref6><pubmed>16698267</pubmed></ref><ref name=ref7><pubmed>18275379</pubmed></ref> | シナプトタグミンは[[シナプス小胞]]上に豊富に存在する[[カルシウム]]・[[リン脂質]]結合分子として同定された[[wikipedia:ja:膜タンパク質|膜タンパク質]]である<ref name=ref1><pubmed>2333096</pubmed></ref>。シナプトタグミンは[[wikipedia:ja:植物|植物]]・[[wikipedia:ja:動物|動物]]を含め様々な生物種に存在することが現在では知られており、[[wikipedia:ja:ヒト|ヒト]]や[[マウス]]では17種類のアイソフォームの存在が報告されている<ref name=ref2><pubmed>12801916</pubmed></ref><ref name=ref3><pubmed>20078875</pubmed></ref>。N末端側に[[wikipedia:ja:膜貫通領域|膜貫通領域]]を1カ所持ち、C末端側の[[wikipedia:ja:細胞質|細胞質]]領域に存在する二つのC2領域でカルシウムイオンやリン脂質を結合することが知られている<ref name=ref4><pubmed>15217342</pubmed></ref><ref name=ref5>'''Fukuda, M.'''<br>Molecular mechanism of Exocytosis.<br>Landes Bioscience, Austin, TX, (2006) 42-61</ref><ref name=ref6><pubmed>16698267</pubmed></ref><ref name=ref7><pubmed>18275379</pubmed></ref>。この[[カルシウムイオン]]の結合能を利用して、シナプトタグミンファミリーはシナプス小胞からの[[神経伝達物質]]放出をはじめ、[[開口放出]]([[エクソサイトーシス]]:exocytosis)の際の主要な「[[カルシウムセンサー]]」として機能するものと考えられている。 | ||
==シナプトタグミンとは== | ==シナプトタグミンとは== | ||
24行目: | 24行目: | ||
[[image:シナプトタグミン図1.jpg|thumb|300px|'''図1 神経伝達物質の放出を司るカルシウムセンサー'''<br>神経伝達物質の放出は、シナプス小胞が細胞膜の近傍まで運ばれるトランスロケーションのステップ、標的となる膜に結合するドッキングのステップ、準備期間としてのプライミングのステップ、そして、融合のステップより構成されている(これらのステップを総称してエキソサイトーシスと呼ぶ)。融合した小胞はエンドサイトーシスにより細胞内に回収され、再利用される(リサイクリングのステップ)。融合のステップは細胞内カルシウム濃度の上昇に伴って起こることから、何らかのカルシウムセンサーの存在が提唱されている。]] | [[image:シナプトタグミン図1.jpg|thumb|300px|'''図1 神経伝達物質の放出を司るカルシウムセンサー'''<br>神経伝達物質の放出は、シナプス小胞が細胞膜の近傍まで運ばれるトランスロケーションのステップ、標的となる膜に結合するドッキングのステップ、準備期間としてのプライミングのステップ、そして、融合のステップより構成されている(これらのステップを総称してエキソサイトーシスと呼ぶ)。融合した小胞はエンドサイトーシスにより細胞内に回収され、再利用される(リサイクリングのステップ)。融合のステップは細胞内カルシウム濃度の上昇に伴って起こることから、何らかのカルシウムセンサーの存在が提唱されている。]] | ||
[[神経細胞]]間の情報伝達は、主に[[シナプス]]部における神経伝達物質のやり取りによって行われている。神経伝達物質は[[シナプス前部]]に存在するシナプス小胞に貯蔵されており、開口放出によって[[シナプス間隙]] | [[神経細胞]]間の情報伝達は、主に[[シナプス]]部における神経伝達物質のやり取りによって行われている。神経伝達物質は[[シナプス前部]]に存在するシナプス小胞に貯蔵されており、開口放出によって[[シナプス間隙]]へと放出される。この開口放出機構は、小胞の[[シナプス前]]部膜付近への移動(トランスロケーション:translocation)、[[細胞膜]]との繋留/接着(テザリング/ドッキング:tethering/docking)、[[プライミング]]と呼ばれる融合可能な状態への準備(priming)を経て、小胞膜と細胞膜の融合(fusion)に至る一連の過程から構成されている(図1)。開口放出によって細胞膜に移行した小胞のタンパク質は、その後エンドサイトーシスによって選択的に回収([[リサイクリング]]:recycling)される。 | ||
これらの過程の中で、特にシナプス小胞と細胞膜の融合は細胞外からの[[カルシウム]]イオン流入によって厳密に制御されていることから、シナプス小胞上にはカルシウムイオン上昇を感知するカルシウムセンサー(カルシウムイオンを結合し膜融合を促進する分子で、膜融合の装置そのものではない)の存在が提唱されてきた<ref name=ref8><pubmed>11399430</pubmed></ref>。 | |||
シナプトタグミン1は1981年にシナプス小胞や内[[分泌]]細胞の[[有芯小胞]]上に豊富に存在する分子量65,000のシナプス小胞抗原タンパク質(p65)として報告され<ref name=ref16><pubmed>7298720</pubmed></ref>、1990年にその構造が明らかにされた<ref name=ref1><pubmed>2333096</pubmed></ref>。遺伝学、生化学などを駆使した近年の目覚ましい研究成果により、現在ではシナプス小胞上に存在するシナプトタグミン1分子が主要なカルシウムセンサー(唯一ではなく、主に低親和性カルシウムセンサーとして機能)であると考えられている<ref name=ref4><pubmed>15217342</pubmed></ref><ref name=ref5>'''Fukuda, M.'''<br>Molecular mechanism of Exocytosis.<br>Landes Bioscience, Austin, TX, (2006) 42-61</ref><ref name=ref6><pubmed>16698267</pubmed></ref><ref name=ref7><pubmed>18275379</pubmed></ref>。 | |||
また、シナプス小胞以外のカルシウム依存的な小胞輸送過程に他のシナプトタグミンアイソフォームの関与も相次いで報告され、シナプトタグミンファミリーがかなり普遍的なカルシウムセンサーではないかという概念が定着しつつある。 | また、シナプス小胞以外のカルシウム依存的な小胞輸送過程に他のシナプトタグミンアイソフォームの関与も相次いで報告され、シナプトタグミンファミリーがかなり普遍的なカルシウムセンサーではないかという概念が定着しつつある。 |