「Dab1」の版間の差分

ナビゲーションに移動 検索に移動
102 バイト追加 、 2013年9月3日 (火)
編集の要約なし
編集の要約なし
編集の要約なし
51行目: 51行目:
英語名: disabled 1、Dab1 遺伝子名: disabled homolog 1(ヒト)、disabled 1 (マウス)、遺伝子シンボル:Dab1 (ヒト)、DAB1 (マウス)  
英語名: disabled 1、Dab1 遺伝子名: disabled homolog 1(ヒト)、disabled 1 (マウス)、遺伝子シンボル:Dab1 (ヒト)、DAB1 (マウス)  


{{box|text=
{{box|text= Dab1は[[中枢神経系]]において[[神経細胞]]の正常な[[神経細胞移動|移動]]・配置に必須の細胞内[[シグナル伝達]]分子で、神経細胞の[[樹状突起]]の発達等にも関与していると考えられている<ref><pubmed>16512359</pubmed></ref><ref name="honda"><pubmed>21253854</pubmed></ref>。''dab1''遺伝子の欠損は層構造を形成する[[大脳新皮質]]、[[海馬]]、[[小脳]]、あるいは核構造を形成する[[脳幹]]、[[脊髄]]等の神経細胞の配置に異常を引き起こす。同様な表現型は、[[リーリン]]遺伝子に変異のある[[リーラー|''reeler'']]マウスと、[[Low density lipoprotein receptor-related protein 8|''low density lipoprotein receptor-related protein 8'']] ([[apoER2|''apoER2'']])と[[VLDL receptor|''very-low-density-lipoprotein receptor'']] ([[vldlr|''vldlr'']])のダブル[[ノックアウトマウス]]でも観察されている。様々な実験結果により、細胞外のリーリンがApoER2/VLDLRにより受容され、Dab1が細胞内でシグナルを伝達するシグナル伝達経路を形成していると考えられている。また、リーリン刺激によって[[リン酸化]]を受けるDab1の[[wikipedia:ja:チロシン|チロシン]]5所を[[wikipedia:ja:フェニルアラニン|フェニルアラニン]]に変異させたマウスでは、''dab1''遺伝子の変異と同じ神経細胞の配置異常が引き起こされることから、Dab1の[[チロシンリン酸化]]はこのシグナル伝達経路に必須であることが示されている。チロシンリン酸化されたDab1により活性化される経路が調べられ、中でも[[Crk]]/[[CrkL]]-[[C3G]]-[[Rap1]]経路が、[[N-カドヘリン]]や[[インテグリンα5β1]] の制御を行うことで神経細胞の移動調節を行っている可能性が示唆されている。 }}
 Dab1は[[中枢神経系]]において[[神経細胞]]の正常な[[移動]]・配置に必須の細胞内[[シグナル伝達]]分子で、神経細胞の[[樹状突起]]の発達等にも関与していると考えられている<ref><pubmed>16512359</pubmed></ref><ref name="honda"><pubmed>21253854</pubmed></ref>。''dab1''遺伝子の欠損は層構造を形成する[[大脳新皮質]]、[[海馬]]、[[小脳]]、あるいは核構造を形成する[[脳幹]]、[[脊髄]]等の神経細胞の配置に異常を引き起こす。同様な表現型は、[[リーリン]]遺伝子に変異のある[[reeler|''reeler'']]マウスと、[[Low density lipoprotein receptor-related protein 8|''low density lipoprotein receptor-related protein 8'']] ([[apoER2|''apoER2'']])と[[VLDL receptor|''very-low-density-lipoprotein receptor'']] ([[vldlr|''vldlr'']])のダブル[[ノックアウトマウス]]でも観察されている。様々な実験結果により、細胞外のリーリンがApoER2/VLDLRにより受容され、Dab1が細胞内でシグナルを伝達するシグナル伝達経路を形成していると考えられている。また、リーリン刺激によって[[リン酸化]]を受けるDab1の[[wikipedia:ja:チロシン|チロシン]]5所を[[wikipedia:ja:フェニルアラニン|フェニルアラニン]]に変異させたマウスでは、''dab1''遺伝子の変異と同じ神経細胞の配置異常が引き起こされることから、Dab1の[[チロシンリン酸化]]はこのシグナル伝達経路に必須であることが示されている。チロシンリン酸化されたDab1により活性化される経路が調べられ、中でも[[Crk]]/[[CrkL]]-[[C3G]]-[[Rap1]]経路が、[[N-カドヘリン]]や[[インテグリン α5β1]] の制御を行うことで神経細胞の移動調節を行っている可能性が示唆されている。  
}}


== 歴史的推移  ==
== 歴史的推移  ==


 1997年、チロシンキナーゼ[[Src]]に結合するタンパク質が探索され、当時未知のタンパク質であった、Disabled 1 (Dab1)([[ショウジョウバエ]]で同定されていた[[disabled-1|''disabled-1'']]遺伝子と相同性があった為命名)が同定された<ref name="ref1"><pubmed>9009273</pubmed></ref>。Dab1は N末端領域に[[Phosphotyrosine-binding domain]] (PTB)ドメインを持つ[[アダプタータンパク質]]で、Srcによりリン酸化されることが明らかになった<ref name="ref1" />。''dab1''ノックアウトマウスが作成された所、大脳新皮質、海馬、小脳において神経細胞の配置異常が観察された<ref><pubmed>9338785</pubmed></ref>。この表現型は1951年に報告され、その原因遺伝子リーリンが1995年に明らかにされた、リーラー(''reeler'')マウスの表現型(リーラーフェノタイプ)<ref>'''Two new mutants trembler and reeler, with neurological actionss in the house mouse'''<br>J. Genet..: 1951, 51, 192-201[http://link.springer.com/article/10.1007%2FBF02996215 論文掲載サイト]</ref>と酷似していた。さらに、リーラーフェノタイプを示すことが知られていた[[Yotari|''yotari'']]マウスと[[Scrambler|''scrambler'']]マウスの原因遺伝子が''dab1''であることが明らかになり<ref><pubmed>9338784</pubmed></ref><ref><pubmed>9436647</pubmed></ref><ref><pubmed>9292716</pubmed></ref><ref><pubmed>10648895</pubmed></ref>、Dab1とリーリンとの関連性が示唆された。
 1997年、チロシンキナーゼ[[Src]]に結合するタンパク質が探索され、当時未知のタンパク質であった、Disabled 1 (Dab1)([[ショウジョウバエ]]で同定されていた[[disabled-1|''disabled-1'']]遺伝子と相同性があった為命名)が同定された<ref name="ref1"><pubmed>9009273</pubmed></ref>。Dab1はN末端領域に[[Phosphotyrosine-binding domain]] (PTBドメイン)を持つ[[アダプタータンパク質]]で、Srcによりリン酸化されることが明らかになった<ref name="ref1" />。''dab1''ノックアウトマウスが作成された所、大脳新皮質、海馬、小脳において神経細胞の配置異常が観察された<ref><pubmed>9338785</pubmed></ref>。この表現型は1951年に報告され、その原因遺伝子リーリンが1995年に明らかにされた、リーラー(''reeler'')マウスの表現型(リーラー表現型)<ref>'''Two new mutants trembler and reeler, with neurological actionss in the house mouse'''<br>J. Genet..: 1951, 51, 192-201[http://link.springer.com/article/10.1007%2FBF02996215 論文掲載サイト]</ref>と酷似していた。さらに、リーラー表現型を示すことが知られていた[[Yotari|''yotari'']]マウスと[[Scrambler|''scrambler'']]マウスの原因遺伝子が''dab1''であることが明らかになり<ref><pubmed>9338784</pubmed></ref><ref><pubmed>9436647</pubmed></ref><ref><pubmed>9292716</pubmed></ref><ref><pubmed>10648895</pubmed></ref>、Dab1とリーリンとの関連性が示唆された。


 実際、''reeler''マウスでは、
 実際、リーラーマウスでは、
#''dab1''のmRNA量は変化しないが、タンパク質量が上昇していること、<ref name="rice"><pubmed>9716537</pubmed></ref>、
#''dab1''のmRNA量は変化しないが、タンパク質量が上昇していること、<ref name="rice"><pubmed>9716537</pubmed></ref>、
#リーリンは脳表層に分布するカハールレチウス細胞に主に発現が観察されるが、Dab1はそれに隣接する神経細胞に発現が観察され、相補的な発現パターンになっていること<ref name="rice" />、
#リーリンは脳表層に分布するカハールレチウス細胞に主に発現が観察されるが、Dab1はそれに隣接する神経細胞に発現が観察され、相補的な発現パターンになっていること<ref name="rice" />、
76行目: 74行目:
 2011年以降には、これまでの観察で培養神経細胞のリーリン刺激が、Dab1のリン酸化を介してCrk-C3G-Rap1経路を活性化すること<ref name="crc"><pubmed>21315259</pubmed></ref>が報告されていた為、Rap1のエフェクター分子が調べられた。その結果、リーリン-Dab1シグナルはN-カドヘリンを介して神経細胞の[[神経細胞移動|ロコモーション]]と呼ばれる移動過程<ref name="ncad1"><pubmed>1315259</pubmed></ref><ref name="ncad2"><pubmed>21516100</pubmed></ref>に、インテグリン<span class="texhtml">α</span>5<span class="texhtml">β</span>1を介して[[神経細胞移動|ターミナルトランスロケーション]]と呼ばれる移動過程に関与している<ref name="sekine2"><pubmed>23083738</pubmed></ref>可能性が示唆された。  
 2011年以降には、これまでの観察で培養神経細胞のリーリン刺激が、Dab1のリン酸化を介してCrk-C3G-Rap1経路を活性化すること<ref name="crc"><pubmed>21315259</pubmed></ref>が報告されていた為、Rap1のエフェクター分子が調べられた。その結果、リーリン-Dab1シグナルはN-カドヘリンを介して神経細胞の[[神経細胞移動|ロコモーション]]と呼ばれる移動過程<ref name="ncad1"><pubmed>1315259</pubmed></ref><ref name="ncad2"><pubmed>21516100</pubmed></ref>に、インテグリン<span class="texhtml">α</span>5<span class="texhtml">β</span>1を介して[[神経細胞移動|ターミナルトランスロケーション]]と呼ばれる移動過程に関与している<ref name="sekine2"><pubmed>23083738</pubmed></ref>可能性が示唆された。  


== 分子構造 ==
== 構造 ==


[[Image:Fig1 Dab1 primary structure.png|thumb|400px|<b>図1.Dab1のドメイン構造</b><br>p80とp45、二つのスプライスバリアントを示す。オレンジ色の領域がPhosphotyrosine-binding (PTB)ドメイン、赤色の領域が核移行シグナル(Nuclear Localization Signal (NLS))、青色の領域が核外移行シグナル(Nuclear Export Signal(NES))、Yがチロシンリン酸化部位を示す。p45の灰色部分はp45特有の配列を示す。]]  
[[Image:Fig1 Dab1 primary structure.png|thumb|400px|<b>図1.Dab1のドメイン構造</b><br>p80とp45、二つのスプライスバリアントを示す。オレンジ色の領域がPhosphotyrosine-binding (PTB)ドメイン、赤色の領域が核移行シグナル(Nuclear Localization Signal (NLS))、青色の領域が核外移行シグナル(Nuclear Export Signal(NES))、Yがチロシンリン酸化部位を示す。p45の灰色部分はp45特有の配列を示す。]]  
 
===ドメイン構造===
 マウスでは[[wikipedia:ja:選択的スプライシング|選択的スプライシング]]により13種の[[wikipedia:ja:スプライスバリアント|スプライスバリアント]]が存在することが報告されている<ref name="crk" />が、発達過程の中枢神経系では555アミノ酸を持つスプライスバリアント、''dab1'' p80(図1、p80)が最も多く発現している<ref name="ref1" />。  
 マウスでは[[wikipedia:ja:選択的スプライシング|選択的スプライシング]]により13種の[[wikipedia:ja:スプライスバリアント|スプライスバリアント]]が存在することが報告されている<ref name="crk" />が、発達過程の中枢神経系では555アミノ酸を持つスプライスバリアント、''dab1'' p80(図1、p80)が最も多く発現している<ref name="ref1" />。  


 Dab1(p80)はN末端側にPTBドメイン、続く領域にチロシンリン酸化部位を持つ細胞内タンパク質である(図1)。PTBドメインは、細胞内ドメインにNPxYモチーフを持つ膜タンパク質と結合する。これまでに、ApoER2<ref name="ref2" />、VLDLR<ref name="ref2" />、マウス[[Pcdh18]]<ref name="ref1" />(Pcdh18の場合はNPTS配列を持つ)、[[Amyloid precursor protein]] ([[APP]])<ref name="ref2" />、[[Amyloid-like protein 1]] ([[APLP1]])<ref name="ref2" />、 [[Amyloid-like protein 2]] ([[APLP2]])<ref><pubmed>11716507</pubmed></ref>との結合が報告されている。これらの結合にはNPxYモチーフのチロシン残基のリン酸化は必要としない。PTBドメインには[[plekstrin homology]] (PH)ドメイン様構造が含まれており、[[リン脂質]]([[Phosphatidylinositol 4-phosphate]]と[[Phosphatidylinositol 4,5-bisphosphate]])に結合することが出来る<ref name="app"><pubmed>10373567</pubmed></ref>。また、PTBドメインのN末端側には[[wikipedia:ja:核移行シグナル|核移行シグナル]]([[wikipedia:Nuclear localization signal|Nuclear localization Signal]]: NLS)、PTBドメインのC末端側に二つの[[wikipedia:ja:核外移行シグナル|核外移行シグナル]]([[wikipedia:Nuclear Export Signal|Nuclear Export Signal]]: NES)を持っており、核と細胞質間を移行する能力を有している<ref name="app"><pubmed>10460257</pubmed></ref>。
 Dab1(p80)はN末端側にPTBドメイン、続く領域にチロシンリン酸化部位を持つ細胞内タンパク質である(図1)。PTBドメインは、細胞内ドメインにNPxYモチーフを持つ膜タンパク質と結合する。これまでに、ApoER2<ref name="ref2" />、VLDLR<ref name="ref2" />、マウス[[Pcdh18]]<ref name="ref1" />(Pcdh18の場合はNPTS配列を持つ)、[[Amyloid precursor protein]] ([[APP]])<ref name="ref2" />、[[Amyloid-like protein 1]] ([[APLP1]])<ref name="ref2" />、 [[Amyloid-like protein 2]] ([[APLP2]])<ref><pubmed>11716507</pubmed></ref>との結合が報告されている。これらの結合にはNPxYモチーフのチロシン残基のリン酸化は必要としない。PTBドメインには[[plekstrin homology]] (PH)ドメイン様構造が含まれており、[[リン脂質]]([[Phosphatidylinositol 4-phosphate]]と[[Phosphatidylinositol 4,5-bisphosphate]])に結合することが出来る<ref name="app"><pubmed>10373567</pubmed></ref>。また、PTBドメインのN末端側には[[wikipedia:ja:核移行シグナル|核移行シグナル]]([[wikipedia:Nuclear localization signal|Nuclear localization Signal]]: NLS)、PTBドメインのC末端側に二つの[[wikipedia:ja:核外移行シグナル|核外移行シグナル]]([[wikipedia:Nuclear Export Signal|Nuclear Export Signal]]: NES)を持っており、核と細胞質間を移行する能力を有している<ref name="app"><pubmed>10460257</pubmed></ref>。


 また、''dab1''のp45スプライスバリアント(図1、p45)がコードするタンパク質は、p80とN末端側の1番目〜241番目のアミノ酸までが共通で、そのC末端側は異なる配列を有している。p45のみを発現するノックインマウスが作成されたが、リーラーフェノタイプは示さないことから、中枢神経系の正常発生については、p45に含まれないp80のC末端側の部位は必要では無いことが示されている<ref name="feng"><pubmed>18981215</pubmed></ref>。
===リン酸化===
 PTBドメインのC末端側、分子の中程にチロシンリン酸化を受ける部位が5カ所(Y185、Y198、Y200、Y220、Y232)同定されており<ref name="app" />、このうちの4つがシグナルの伝達に重要な役割を果たしている事が明らかにされている<ref name="app" /><ref><pubmed>17062576</pubmed></ref>。4つのチロシンリン酸化サイトは配列の相同性からYQXI配列を持つ2つ(Y185、Y198)とYXVP配列を持つ二つ(Y220、Y232)に分けられる。 神経細胞の移動に関しては、YQXI配列を持つY185とY198の間、およびYXVP配列を持つY220とY232の間で機能に冗長性を持つ。一方、両方の[[wikipedia:ja:対立遺伝子|対立遺伝子]]にY185・Y198両方に変異を持つマウスと、Y220・Y232両方に変異を持つマウスではそれぞれリーラーフェノタイプを示す。しかしながら、片方の対立遺伝子でY185・Y198両方に変異を持ち、もう一方の対立遺伝子でY220・Y232両方に変異を持つ変異マウスではリーラーフェノタイプを示さないことから、YQXI配列を持つY185・Y198とYXVP配列を持つY220・Y232はそれぞれ独立の機能を持ち、さらにYQXI配列とYXVP配列間で相互依存する関係であることが示されている<ref name="5F" />。Y200の生理的役割は不明である。  
 PTBドメインのC末端側、分子の中程にチロシンリン酸化を受ける部位が5カ所(Y185、Y198、Y200、Y220、Y232)同定されており<ref name="app" />、このうちの4つがシグナルの伝達に重要な役割を果たしている事が明らかにされている<ref name="app" /><ref><pubmed>17062576</pubmed></ref>。4つのチロシンリン酸化サイトは配列の相同性からYQXI配列を持つ2つ(Y185、Y198)とYXVP配列を持つ二つ(Y220、Y232)に分けられる。 神経細胞の移動に関しては、YQXI配列を持つY185とY198の間、およびYXVP配列を持つY220とY232の間で機能に冗長性を持つ。一方、両方の[[wikipedia:ja:対立遺伝子|対立遺伝子]]にY185・Y198両方に変異を持つマウスと、Y220・Y232両方に変異を持つマウスではそれぞれリーラーフェノタイプを示す。しかしながら、片方の対立遺伝子でY185・Y198両方に変異を持ち、もう一方の対立遺伝子でY220・Y232両方に変異を持つ変異マウスではリーラーフェノタイプを示さないことから、YQXI配列を持つY185・Y198とYXVP配列を持つY220・Y232はそれぞれ独立の機能を持ち、さらにYQXI配列とYXVP配列間で相互依存する関係であることが示されている<ref name="5F" />。Y200の生理的役割は不明である。  
 また、''dab1''のp45スプライスバリアント(図1、p45)がコードするタンパク質は、p80とN末端側の1番目〜241番目のアミノ酸までが共通で、そのC末端側は異なる配列を有している。p45のみを発現するノックインマウスが作成されたが、リーラーフェノタイプは示さないことから、中枢神経系の正常発生については、p45に含まれないp80のC末端側の部位は必要では無いことが示されている<ref name="feng"><pubmed>18981215</pubmed></ref>。


== サブファミリー  ==
== サブファミリー  ==
 [[wikipedia:ja:哺乳類|哺乳類]]では[[Dab2]]が存在しており、細胞表面分子のターンオーバー、[[エンドサイトーシス]]等に関与していると考えられている。  
 [[wikipedia:ja:哺乳類|哺乳類]]では[[Dab2]]が存在しており、細胞表面分子のターンオーバー、[[エンドサイトーシス]]等に関与していると考えられている。  


== 発現様式  ==
== 発現==


 [[In situ ハイブリダイゼーション|''In situ''ハイブリダイゼーション]]により、''dab1'' [[wikipedia:mRNA|mRNA]]の発現分布を調べた報告<ref><pubmed>19796633</pubmed></ref>によると、発生期の[[マウス]]大脳新皮質では、胎生11.5日目の[[神経上皮細胞]]に弱く発現が観察される。胎生12.5日目には[[皮質板]](cortical plate:CP)での強い発現が顕著になり、[[脳室帯]](ventricular zone:VZ)での弱い発現も引き続き観察される。その後、生後0日にかけて、強い皮質板での発現が維持されるが、脳室帯での発現は弱くなり、[[中間帯]](intermediate zone:IMZ)の上部での弱い発現が観察されるようになる。成獣のマウスでも生後0日に比べて弱くはなるが、皮質板において発現が観察される。大脳新皮質では、Dab1の発現部位はリーリンを発現している[[Cajal-Retzius細胞]]が存在する[[辺縁帯]](marginal zone:MZ)と相互排他的発現パターンになっている。  
 [[In situ ハイブリダイゼーション|''In situ''ハイブリダイゼーション]]により、''dab1'' [[wikipedia:mRNA|mRNA]]の発現分布を調べた報告<ref><pubmed>19796633</pubmed></ref>によると、発生期の[[マウス]]大脳新皮質では、胎生11.5日目の[[神経上皮細胞]]に弱く発現が観察される。胎生12.5日目には[[皮質板]](cortical plate:CP)での強い発現が顕著になり、[[脳室帯]](ventricular zone:VZ)での弱い発現も引き続き観察される。その後、生後0日にかけて、強い皮質板での発現が維持されるが、脳室帯での発現は弱くなり、[[中間帯]](intermediate zone:IMZ)の上部での弱い発現が観察されるようになる。成獣のマウスでも生後0日に比べて弱くはなるが、皮質板において発現が観察される。大脳新皮質では、Dab1の発現部位はリーリンを発現している[[カハールレチウス細胞]]が存在する[[辺縁帯]](marginal zone:MZ)と相互排他的発現パターンになっている。  


 海馬では妊娠12.5日目には神経上皮細胞に弱く''dab1''のmRNAが観察され、妊娠14.5日目までに海馬の辺縁帯、[[錐体細胞層]]、脳室帯の三層が別れ、錐体細胞層に強い発現が観察されるようになる。また隣り合う歯状回の顆粒細胞層にも''dab1''の発現が観察される。海馬についても''dab1''の発現は生後3日でも維持される。また、大脳新皮質と同様、Dab1の発現領域はリーリンを発現するCajal-Retzius細胞の存在する辺縁帯に隣接した領域で観察される。
 海馬では妊娠12.5日目には神経上皮細胞に弱く''dab1''のmRNAが観察され、妊娠14.5日目までに海馬の辺縁帯、[[錐体細胞層]]、脳室帯の三層が別れ、錐体細胞層に強い発現が観察されるようになる。また隣り合う歯状回の顆粒細胞層にも''dab1''の発現が観察される。海馬についても''dab1''の発現は生後3日でも維持される。また、大脳新皮質と同様、Dab1の発現領域はリーリンを発現するカハールレチウス細胞の存在する辺縁帯に隣接した領域で観察される。


 小脳については、妊娠13.5日目の脳室帯、外顆粒層、分化帯に発現が見られ、妊娠18.5日目から生後3日では、[[プルキンエ細胞]]層で発現が観察される。また妊娠18.5日目では、リーリンを強く発現する顆粒細胞が存在する外顆粒層に隣接してプルキンエ細胞層が存在し、小脳においても相補的な発現パターンを示す。
 小脳については、妊娠13.5日目の脳室帯、[[外顆粒層]]、[[分化帯]]に発現が見られ、妊娠18.5日目から生後3日では、[[プルキンエ細胞]]層で発現が観察される。また妊娠18.5日目では、リーリンを強く発現する[[顆粒細胞]]が存在する外顆粒層に隣接してプルキンエ細胞層が存在し、小脳においても相補的な発現パターンを示す。


 Dab1のタンパク質がどの様な細胞に、どのような細胞内分布で発現しているのかは、[[免疫組織化学染色]]が難しく報告は少ないが、mRNAの発現分布と一致して大脳新皮質や海馬では神経細胞、小脳ではプルキンエ細胞に発現していることが報告されている<ref name="feng" />。また、生体内における詳細な細胞内分布については不明である。  
 Dab1のタンパク質がどの様な細胞に、どのような細胞内分布で発現しているのかは、[[免疫組織化学染色]]が難しく報告は少ないが、mRNAの発現分布と一致して大脳新皮質や海馬では神経細胞、小脳ではプルキンエ細胞に発現していることが報告されている<ref name="feng" />。また、生体内における詳細な細胞内分布については不明である。  
109行目: 107行目:


 前述の通り、dab1のノックアウトマウス及び、自然変異マウスで、大脳新皮質、海馬、小脳、脳幹、脊髄等の神経細胞の移動が障害されていることから、Dab1は層構造・核構造を形成する神経細胞移動において大変重要な役割を担っている考えられている。他の組織・臓器における機能についてはいくつか報告があるのみで、あまりよくわかっていない。  
 前述の通り、dab1のノックアウトマウス及び、自然変異マウスで、大脳新皮質、海馬、小脳、脳幹、脊髄等の神経細胞の移動が障害されていることから、Dab1は層構造・核構造を形成する神経細胞移動において大変重要な役割を担っている考えられている。他の組織・臓器における機能についてはいくつか報告があるのみで、あまりよくわかっていない。  
 
===大脳新皮質神経発生における機能 ===
=== Dab1欠損による大脳新皮質発生異常  ===
====欠損による異常====


[[Image:Migration.png|thumb|400px|<b>図2.大脳新皮質の正常発生とリーリン、''dab1''変異マウス、''apoER2/vldlr'' ダブルノックアウトマウスの発生異常</b><br> (A) 発生期のマウス脳の模式図。下図は上図の点線部分で冠状断にした際の断面図。薄い赤色部分を拡大した図をBとCに示す。(B、C) 野生型(B)、または''reeler''、''yotari''、''scrambler''、''apoer2/vldlr''ダブルノックアウトマウス(C)の大脳新皮質の発生過程を示す。脳の表面は上方向、脳室側は下方向。数字は野生型マウスで配置される予定の層を示す。(B, i)野生型マウスで脳室帯(ventricular zone: VZ)に存在するラジアルグリア細胞(radial glia cell (RG)、 神経幹細胞)から誕生した神経細胞は、脳の表面方向に向かい移動する。CR:カハールレチウス(Cajal-Retzius)細胞。SP:サブプレート(subplate)神経細胞。PP:プレプレート(preplate)。(B, ii) 最初に誕生した将来6層になる神経細胞はサブプレート神経細胞を乗り越えて、辺縁帯 (MZ:marginal zone)の直下で樹状突起を形成して分化する。(B,iii) 遅生まれの神経細胞は次々に早生まれの神経細胞を追い越し、脳表層で分化を開始する。その結果、脳の深層側に早生まれの細胞、浅層側に遅生まれの細胞が配置される“インサイドアウト”形式で神経細胞が配置される。CP:皮質板(cortical plate)。(C, i,ii,iii) 一方、''reeler''、''yotari'', ''scrambler''マウス、及び ''apoer2/vldlr''ダブルノックアウトマウスでは脳室帯で誕生した神経細胞がサブプレート神経細胞を追い越すことが出来ずに脳の表面付近に異所性に配置される。後から誕生した神経細胞も移動障害により先行する神経細胞を追い越せずに配置され、全体的に見た場合、層構造が逆転した様な配置になる。また一部の神経細胞は樹状突起をインターナルプレキシフォームゾーン(IPZ:internal plexiform zone)と呼ばれる異常な構造に向けて展開する。SPP:スーパープレート(super plate)。]]  
[[Image:Migration.png|thumb|400px|<b>図2.大脳新皮質の正常発生とリーリン、''dab1''変異マウス、''apoER2/vldlr'' ダブルノックアウトマウスの発生異常</b><br> (A) 発生期のマウス脳の模式図。下図は上図の点線部分で冠状断にした際の断面図。薄い赤色部分を拡大した図をBとCに示す。(B、C) 野生型(B)、または''reeler''、''yotari''、''scrambler''、''apoer2/vldlr''ダブルノックアウトマウス(C)の大脳新皮質の発生過程を示す。脳の表面は上方向、脳室側は下方向。数字は野生型マウスで配置される予定の層を示す。(B, i)野生型マウスで脳室帯(ventricular zone: VZ)に存在するラジアルグリア細胞(radial glia cell (RG)、 神経幹細胞)から誕生した神経細胞は、脳の表面方向に向かい移動する。CR:カハールレチウス(Cajal-Retzius)細胞。SP:サブプレート(subplate)神経細胞。PP:プレプレート(preplate)。(B, ii) 最初に誕生した将来6層になる神経細胞はサブプレート神経細胞を乗り越えて、辺縁帯 (MZ:marginal zone)の直下で樹状突起を形成して分化する。(B,iii) 遅生まれの神経細胞は次々に早生まれの神経細胞を追い越し、脳表層で分化を開始する。その結果、脳の深層側に早生まれの細胞、浅層側に遅生まれの細胞が配置される“インサイドアウト”形式で神経細胞が配置される。CP:皮質板(cortical plate)。(C, i,ii,iii) 一方、''reeler''、''yotari'', ''scrambler''マウス、及び ''apoer2/vldlr''ダブルノックアウトマウスでは脳室帯で誕生した神経細胞がサブプレート神経細胞を追い越すことが出来ずに脳の表面付近に異所性に配置される。後から誕生した神経細胞も移動障害により先行する神経細胞を追い越せずに配置され、全体的に見た場合、層構造が逆転した様な配置になる。また一部の神経細胞は樹状突起をインターナルプレキシフォームゾーン(IPZ:internal plexiform zone)と呼ばれる異常な構造に向けて展開する。SPP:スーパープレート(super plate)。]]  
118行目: 116行目:
 ''dab1''欠損マウスでは神経細胞は正常に産生されるが、神経細胞はプレプレートの間に入ることが出来ず、プレプレートスプリッティングが起らない。その為辺縁帯が存在しない。後続の神経細胞は正常に移動出来ずに、脳表面から脳室方向に異所性に配置され、“アウトサイドイン”と呼ばれる異常な組織構築を行うようになり、大体の層構造が逆転する異常な大脳新皮質が形成される。異常な構造中には、インターナルプレキシフォームゾーン(internal plexiform zone)と呼ばれる細胞密度の低い領域が散在し、この部分には視床からサブプレートに投射する[[軸索]]等が走行しする。また神経細胞からは樹状突起がこの領域に向かい展開される傾向がある<ref><pubmed>12205665</pubmed></ref>。  
 ''dab1''欠損マウスでは神経細胞は正常に産生されるが、神経細胞はプレプレートの間に入ることが出来ず、プレプレートスプリッティングが起らない。その為辺縁帯が存在しない。後続の神経細胞は正常に移動出来ずに、脳表面から脳室方向に異所性に配置され、“アウトサイドイン”と呼ばれる異常な組織構築を行うようになり、大体の層構造が逆転する異常な大脳新皮質が形成される。異常な構造中には、インターナルプレキシフォームゾーン(internal plexiform zone)と呼ばれる細胞密度の低い領域が散在し、この部分には視床からサブプレートに投射する[[軸索]]等が走行しする。また神経細胞からは樹状突起がこの領域に向かい展開される傾向がある<ref><pubmed>12205665</pubmed></ref>。  


=== Dab1の大脳新皮質神経発生における機能  ===
==== Dab1の大脳新皮質神経発生における機能  ====


 ''dab1''欠損により引き起こされるこれらの神経細胞の移動障害が、''dab1''が欠損した細胞自身の障害によるものなのか、あるいは、''dab1''を欠損した周囲の細胞によって引き起こされた二次的な原因によるものなのか、あるいは両方なのか、Dab1の機能を解明する上で焦点となった。この問題を解決するため、野生型''dab1''を発現する細胞と''dab1''を欠損した細胞の[[wikipedia:ja:キメラ|キメラ]]マウスが作成された<ref><pubmed>11698592</pubmed></ref>。その結果、野生型の''dab1を''発現する細胞群が''dab1''を欠損した細胞群の上に配置されるような異常な皮質構造(スーパーコルテックス)が形成される一方、少数の野生型細胞が''dab1''欠損細胞群中に取り込まれることが示された。この結果より、''dab1''欠損による細胞の移動障害は主には細胞内因性の障害によって引き起こされているが、一部は周囲の細胞の障害にも影響されていることが示唆された。
 ''dab1''欠損により引き起こされるこれらの神経細胞の移動障害が、''dab1''が欠損した細胞自身の障害によるものなのか、あるいは、''dab1''を欠損した周囲の細胞によって引き起こされた二次的な原因によるものなのか、あるいは両方なのか、Dab1の機能を解明する上で焦点となった。この問題を解決するため、野生型''dab1''を発現する細胞と''dab1''を欠損した細胞の[[wikipedia:ja:キメラ|キメラ]]マウスが作成された<ref><pubmed>11698592</pubmed></ref>。その結果、野生型の''dab1を''発現する細胞群が''dab1''を欠損した細胞群の上に配置されるような異常な皮質構造(スーパーコルテックス)が形成される一方、少数の野生型細胞が''dab1''欠損細胞群中に取り込まれることが示された。この結果より、''dab1''欠損による細胞の移動障害は主には細胞内因性の障害によって引き起こされているが、一部は周囲の細胞の障害にも影響されていることが示唆された。
132行目: 130行目:
[[Image:Dab1 signaling pathway2.png|thumb|400px|<b>図3.大脳新皮質層形成時におけるDab1を介するシグナル伝達系の模式図</b><br>主にCajal-Retzius細胞から分泌されたリーリンは移動神経細胞に発現するApoER2やVLDLRに結合し、FynあるいはSrc等のSrcファミリーチロシンキナーゼの活性化により、Dab1をリン酸化する。リン酸化されたDab1にはPI3K, SOCS3, Nck<math>\beta</math>, Crkが結合する。Crkの下流でC3GがRap1をGDP結合型からGTP結合型に変換し、活性化されたRap1はインテグリン<math>\alpha</math>5<math>\beta</math>1の活性を制御すると考えられている(青線で示された経路)。一方、N-カドヘリンについては、他のGEFを介したRap1の活性化によって機能制御を受けている可能性が示唆されている(緑線の経路)。NotchとDab1の結合にDab1のリン酸化が必要かは明らかになっていない。]]  
[[Image:Dab1 signaling pathway2.png|thumb|400px|<b>図3.大脳新皮質層形成時におけるDab1を介するシグナル伝達系の模式図</b><br>主にCajal-Retzius細胞から分泌されたリーリンは移動神経細胞に発現するApoER2やVLDLRに結合し、FynあるいはSrc等のSrcファミリーチロシンキナーゼの活性化により、Dab1をリン酸化する。リン酸化されたDab1にはPI3K, SOCS3, Nck<math>\beta</math>, Crkが結合する。Crkの下流でC3GがRap1をGDP結合型からGTP結合型に変換し、活性化されたRap1はインテグリン<math>\alpha</math>5<math>\beta</math>1の活性を制御すると考えられている(青線で示された経路)。一方、N-カドヘリンについては、他のGEFを介したRap1の活性化によって機能制御を受けている可能性が示唆されている(緑線の経路)。NotchとDab1の結合にDab1のリン酸化が必要かは明らかになっていない。]]  


===分子メカニズム===
====分子メカニズム====
 
 Dab1が神経細胞移動を制御する[[分子メカニズム]]についてはチロシンリン酸化Dab1に結合する分子を中心に解析が進められて来ている。特に''crk''と''crkl''のダブルノックアウトマウス<ref name="crk" />と''c3g''のジーントラップ系統マウス<ref name="c3g" />でリーラーフェノタイプが観察されることから、その下流分子として[[Rap1]]が注目された。Rap1はRasスーパーファミリーに属する[[低分子量Gタンパク質]]で、カドヘリンやインテグリンを介して細胞接着を制御する重要な分子であり、リーリンにより活性化されることが以前に報告されている<ref name="crk" />。


 Dab1が神経細胞移動を制御する[[分子メカニズム]]についてはチロシンリン酸化Dab1に結合する分子を中心に解析が進められて来ている。特に''crk''と''crkl''のダブルノックアウトマウス<ref name="crk" />と''c3g''のジーントラップ系統マウス<ref name="c3g" />でリーラーフェノタイプが観察されることから、その下流分子として[[Rap1]]が注目された。Rap1はRasスーパーファミリーに属する[[低分子量Gタンパク質]]で、カドヘリンやインテグリンを介して細胞接着を制御する重要な分子であり、リーリンにより活性化されることが以前に報告されている<ref name="crk" />。最近の報告により、リーリン-Dab1シグナルはCrk-C3G-Rap1経路を介して、ロコモーションの過程ではN-cadhrinを制御し<ref name="ncad1" /><ref name="ncad2" />、ターミナルトランスロケーションの過程ではインテグリン <span class="texhtml">α</span>5<span class="texhtml">β</span>1を介して神経細胞の移動過程をコントロールしていること<ref name="sekine2" />が示唆されているが、N-カドヘリンについてはRap1ではなく他のGDP-GTP交換因子 (Guanine Nucleotide Exchange Factor, GEF)を介して機能制御している可能性が示唆されている<ref name="sekine2" />。インテグリンを介した神経細胞移動に関しては、インテグリン <span class="texhtml">α</span>3の関与も指摘されている<ref name="sanada" />。しかしながら、N-cadhelinを''dab1''ノックアウトマウスに導入するのみでは、神経細胞の移動がレスキューされないこと<ref name="ncad1" />、また、インテグリン <span class="texhtml">β</span>1のノックアウトマウスやコンディショナルノックアウトマウスではリーラーフェノタイプにはならない<ref><pubmed>11516395</pubmed></ref><ref><pubmed>18077697</pubmed></ref>ことから、これらの働きは部分的である可能性が示唆されている。  
 最近の報告により、リーリン-Dab1シグナルはCrk-C3G-Rap1経路を介して、ロコモーションの過程ではN-cadhrinを制御し<ref name="ncad1" /><ref name="ncad2" />、ターミナルトランスロケーションの過程ではインテグリン <span class="texhtml">α</span>5<span class="texhtml">β</span>1を介して神経細胞の移動過程をコントロールしていること<ref name="sekine2" />が示唆されているが、N-カドヘリンについてはRap1ではなく他のGDP-GTP交換因子 (Guanine Nucleotide Exchange Factor, GEF)を介して機能制御している可能性が示唆されている<ref name="sekine2" />。インテグリンを介した神経細胞移動に関しては、インテグリン <span class="texhtml">α</span>3の関与も指摘されている<ref name="sanada" />。しかしながら、N-cadhelinを''dab1''ノックアウトマウスに導入するのみでは、神経細胞の移動がレスキューされないこと<ref name="ncad1" />、また、インテグリン <span class="texhtml">β</span>1のノックアウトマウスやコンディショナルノックアウトマウスではリーラーフェノタイプにはならない<ref><pubmed>11516395</pubmed></ref><ref><pubmed>18077697</pubmed></ref>ことから、これらの働きは部分的である可能性が示唆されている。  


 また、Dab1のチロシンリン酸化非依存的にDab1に結合する分子として、[[Notch]]<ref name="notch"><pubmed>18957219</pubmed></ref>、[[Dab2IP]]<ref><pubmed>12877983</pubmed></ref>、[[N-WASP]]<ref><pubmed>15361067</pubmed></ref>が知られている。特にNotchについては、その活性化型フォームを''reeler''に導入した場合に神経細胞の移動をほぼ完全にレスキューすることから、リーリン-Dab1シグナルにおいて何らかの重要な役割を果たしていることが考えられるが、その作用メカニズムは不明である<ref name="notch" />。  
 また、Dab1のチロシンリン酸化非依存的にDab1に結合する分子として、[[Notch]]<ref name="notch"><pubmed>18957219</pubmed></ref>、[[Dab2IP]]<ref><pubmed>12877983</pubmed></ref>、[[N-WASP]]<ref><pubmed>15361067</pubmed></ref>が知られている。特にNotchについては、その活性化型フォームを''reeler''に導入した場合に神経細胞の移動をほぼ完全にレスキューすることから、リーリン-Dab1シグナルにおいて何らかの重要な役割を果たしていることが考えられるが、その作用メカニズムは不明である<ref name="notch" />。  

案内メニュー