「Nogo」の版間の差分

ナビゲーションに移動 検索に移動
51 バイト除去 、 2012年2月4日 (土)
編集の要約なし
編集の要約なし
編集の要約なし
29行目: 29行目:
====   受容体と細胞内シグナル  ====
====   受容体と細胞内シグナル  ====


 Nogo受容体はGPIアンカー型蛋白であり、細胞内ドメインを持っていない。したがってNogo受容体は神経細胞内にシグナルを伝達することができないため、シグナル伝達を担う別の受容体がNogo受容体と共受容体を形成しているのではないかと考えられた。[[Image:Revised Nogo signal.jpg|frame|right|500px|(図2)Nogoのシグナル伝達経路]]<br> その頃、山下(現大阪大学教授)らは機能の良く分かっていなかった神経栄養因子の受容体であるp75受容体の発生時における役割を明らかにした。p75は、主として末梢神経の軸索伸展を促進していることが報告された<ref><pubmed> 10595511</pubmed></ref>。その後、山下等はこのp75が軸索伸展阻害因子の一つMAG(Myelin Associated Glycoprotein)のシグナルを神経細胞に伝える受容体であることを見い出した<ref><pubmed> 12011108</pubmed></ref>。P75を欠失しているマウスの神経細胞はMAGに対する反応性が失われていた。<br> 次に、p75がMAGのシグナルを伝える受容体であれば、p75とNogo受容体は共受容体を形成し、MAGのみならずNogoとOMgp(Oligodendrocyte Myelin glycoprotein)のシグナルも伝えていることが予測される。その仮説はHeらによって正しいことが証明された<ref><pubmed> 12422217</pubmed></ref>。こうしてp75は再生阻害のキープレーヤーであると考えられるようになった。<br> それではp75を介してどのような細胞内シグナルが形成されるのだろうか。 ニューロトロフィンがp75に作用して軸索の伸展を促すメカニズムは、Rhoの不活性化である<ref><pubmed> 10595511</pubmed></ref>。Rhoはアクチン骨格系あるいはチューブリンを制御することによって、細胞の形態形成の鍵となる蛋白である。MAG によりp75を介してRhoが活性化されること、さらに、p75によりRhoとRhoの活性化阻害蛋白であるRho guanine nucleotide dissociation inhibitor(Rho GDI)が解離することでRhoが活性化に導かれる事実が判明した。<ref><pubmed> 12692556</pubmed></ref> <br> しかしながらp75/Nogo受容体のみでは、ある種の細胞ではリガンドで刺激してもRhoが活性化しない。そこでLingo-1が新しいp75/Nogo受容体コンポーネントの仲間入りした。これにより、p75/Nogo受容体/Lingo-1という受容体複合によりRhoが活性化されて、軸索伸展が阻止されるという基本モデルが完成した(図2左側)<ref><pubmed> 14966521</pubmed></ref>。<br>  
 Nogo受容体はGPIアンカー型蛋白であり、細胞内ドメインを持っていない。したがってNogo受容体は神経細胞内にシグナルを伝達することができないため、シグナル伝達を担う別の受容体がNogo受容体と共受容体を形成しているのではないかと考えられた。[[Image:Nogo signal.jpg|frame|right|500px]]<br> その頃、山下(現大阪大学教授)らは機能の良く分かっていなかった神経栄養因子の受容体であるp75受容体の発生時における役割を明らかにした。p75は、主として末梢神経の軸索伸展を促進していることが報告された<ref><pubmed> 10595511</pubmed></ref>。その後、山下等はこのp75が軸索伸展阻害因子の一つMAG(Myelin Associated Glycoprotein)のシグナルを神経細胞に伝える受容体であることを見い出した<ref><pubmed> 12011108</pubmed></ref>。P75を欠失しているマウスの神経細胞はMAGに対する反応性が失われていた。<br> 次に、p75がMAGのシグナルを伝える受容体であれば、p75とNogo受容体は共受容体を形成し、MAGのみならずNogoとOMgp(Oligodendrocyte Myelin glycoprotein)のシグナルも伝えていることが予測される。その仮説はHeらによって正しいことが証明された<ref><pubmed> 12422217</pubmed></ref>。こうしてp75は再生阻害のキープレーヤーであると考えられるようになった。<br> それではp75を介してどのような細胞内シグナルが形成されるのだろうか。 ニューロトロフィンがp75に作用して軸索の伸展を促すメカニズムは、Rhoの不活性化である<ref><pubmed> 10595511</pubmed></ref>。Rhoはアクチン骨格系あるいはチューブリンを制御することによって、細胞の形態形成の鍵となる蛋白である。MAG によりp75を介してRhoが活性化されること、さらに、p75によりRhoとRhoの活性化阻害蛋白であるRho guanine nucleotide dissociation inhibitor(Rho GDI)が解離することでRhoが活性化に導かれる事実が判明した。<ref><pubmed> 12692556</pubmed></ref> <br> しかしながらp75/Nogo受容体のみでは、ある種の細胞ではリガンドで刺激してもRhoが活性化しない。そこでLingo-1が新しいp75/Nogo受容体コンポーネントの仲間入りした。これにより、p75/Nogo受容体/Lingo-1という受容体複合によりRhoが活性化されて、軸索伸展が阻止されるという基本モデルが完成した(図2左側)<ref><pubmed> 14966521</pubmed></ref>。<br>  


==== Nogoは本当に再生阻害因子か?  ====
==== Nogoは本当に再生阻害因子か?  ====
47行目: 47行目:
 現在PirBの想定されるシグナル伝達機構は、SHP1/2と結合し、その脱リン酸化機構を介してTrkBのシグナルを制御するというものなど、現在報告が増えてきている。<ref><pubmed> 21881600</pubmed></ref><ref><pubmed> 21364532</pubmed></ref>ただ、このPirBのノックアウトマウスにおいても,その脊髄損傷モデル、脳挫傷モデルにおいて、その軸索の再生が促進されることはなかった<ref><pubmed> 20881122</pubmed></ref><ref><pubmed>21087927</pubmed></ref>。今後は、更なる研究成果の蓄積が必要だろうと考えられる。  
 現在PirBの想定されるシグナル伝達機構は、SHP1/2と結合し、その脱リン酸化機構を介してTrkBのシグナルを制御するというものなど、現在報告が増えてきている。<ref><pubmed> 21881600</pubmed></ref><ref><pubmed> 21364532</pubmed></ref>ただ、このPirBのノックアウトマウスにおいても,その脊髄損傷モデル、脳挫傷モデルにおいて、その軸索の再生が促進されることはなかった<ref><pubmed> 20881122</pubmed></ref><ref><pubmed>21087927</pubmed></ref>。今後は、更なる研究成果の蓄積が必要だろうと考えられる。  


 更に、3つの主要なミエリン由来因子(MAG,Nogo,OMgp)はin vivoで再生阻害に働いているのか?これに関しても、最近否定的な結果が得られた。WIlliamらは、主要な再生阻害因子と考えられてきたNogo, MAG,OMgpのトリプルノックアウトマウスを作成して、軸索再生を詳細に脊髄損傷モデルにより検討したところ、全く再生が促進されないことが分かった。<ref><pubmed> 20547125</pubmed></ref>このことにより、ミエリン由来あるいは、グリア瘢痕由来の別の再生阻害因子の存在を考えるべきである。我々は、第4のミエリン由来因子としてRGM(repulsive guidance molecule)という分子が重要であることを報告している。 <ref><pubmed> 16585268 </pubmed></ref>
 更に、3つの主要なミエリン由来因子(MAG,Nogo,OMgp)はin vivoで再生阻害に働いているのか?これに関しても、最近否定的な結果が得られた。WIlliamらは、主要な再生阻害因子と考えられてきたNogo, MAG,OMgpのトリプルノックアウトマウスを作成して、軸索再生を詳細に脊髄損傷モデルにより検討したところ、全く再生が促進されないことが分かった。<ref><pubmed> 20547125</pubmed></ref>このことにより、ミエリン由来あるいは、グリア瘢痕由来の別の再生阻害因子の存在を考えるべきである。我々は、第4のミエリン由来因子としてRGM(repulsive guidance molecule)という分子が重要であることを報告している。 <ref><pubmed> 16585268 </pubmed></ref>  


<br>  
<br>  
151

回編集

案内メニュー