「ランヴィエ絞輪」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
22行目: 22行目:
 捕食や逃避といった行動を考えると、神経伝達速度を上昇させることは、進化の過程で重要な選択圧であることが想像できる。
 捕食や逃避といった行動を考えると、神経伝達速度を上昇させることは、進化の過程で重要な選択圧であることが想像できる。


 長いλを実現するためには、例えば、[[wj:無脊椎動物|無脊椎動物]]である[[wj:イカ|イカ]]の[[巨大軸索]]に見られるように、[[軸索]]を太くしてRiを下げる例があるが、その一方で、[[wj:脊椎動物|脊椎動物]]では[[髄鞘]]を巻いてRmを大きくする方法が獲得された。髄鞘で囲まれていない間隙、すなわち、ランヴィエの絞輪には[[アンキリン]]などのタンパク質を足場にして[[電位依存性チャネル]]が集積し、これにより跳躍伝導が起き<ref name=ref2 />、高速(30-160 m/s)で減衰の無い信号伝達が実現されている。跳躍伝導は[[wj:クルマエビ |クルマエビ]]などの[[wj:節足動物|節足動物]]でも見られ、これは進化的に独立に獲得されたと考えられている<ref><pubmed> 17208176</pubmed></ref>。
 長いλを実現するためには、例えば、[[wj:無脊椎動物|無脊椎動物]]である[[wj:イカ|イカ]]の[[巨大軸索]]に見られるように、[[軸索]]を太くしてRiを下げる例があるが、その一方で、[[wj:脊椎動物|脊椎動物]]では[[髄鞘]]を巻いてRmを大きくする方法が獲得された。髄鞘で囲まれていない間隙、すなわち、ランヴィエの絞輪には[[アンキリン]]などのタンパク質を足場にして[[電位依存性チャネル]]が集積し、これにより跳躍伝導が起き<ref name=ref2 />、高速(30-160 m/s)で減衰の無い信号伝達が実現されている。跳躍伝導は[[wj:クルマエビ |クルマエビ]]などの[[wj:節足動物|節足動物]]でも見られ、これは進化的に独立に獲得されたと考えられている<ref name=ref3><pubmed> 17208176</pubmed></ref>。


 髄鞘を用いる方法は、太い軸索に比べて、
 髄鞘を用いる方法は、太い軸索に比べて、
28行目: 28行目:
#軸索を相対的にコンパクトにでき、集積化に適する。 
#軸索を相対的にコンパクトにでき、集積化に適する。 
#イオン環境の変動が小さく、[[wj:恒常性|恒常性]]維持のためのエネルギー消費が節約できる。また集積化した際にも、神経線維間で電気信号の混線が起きにくい。
#イオン環境の変動が小さく、[[wj:恒常性|恒常性]]維持のためのエネルギー消費が節約できる。また集積化した際にも、神経線維間で電気信号の混線が起きにくい。
#髄鞘の巻き数や絞輪の間隔を制御する事で、伝達速度の微妙な調節が可能、などの利点を持つと考えられる3。
#髄鞘の巻き数や絞輪の間隔を制御する事で、伝達速度の微妙な調節が可能、などの利点を持つと考えられる<ref name=ref3 />。
 
 例えば、巨大軸索と比較した場合、スペースで1万5千倍、エネルギー消費で数千倍の節約効果があると見積もられている<ref name=ref4 />。
[[Image:Takeshiyoshimura fig 3.jpg|thumb|right|350px|<b>図1.長軸方向に切った髄鞘の模式図</b><br>吉村 武、池中 一裕による[[髄鞘]]の項目から。]]


 例えば、巨大軸索と比較した場合、スペースで1万5千倍、エネルギー消費で数千倍の節約効果があると見積もられている4。
[[ファイル:Node of Ranvier1.png|thumb|right|300px|'''図1. 中枢神経系(画像下半分、CNS)、末梢神経系(画像上半分、PNS)におけるランヴィエの絞輪の模式図'''<br>
IMP: intramembranous particles; ScMv: シュワン細胞からの微絨毛; PNP: perinodal process; BL; 基底膜 (basal lamina); CM: コンパクトなミエリン鞘compact myelin sheath (文献<ref name=ref4 />より引用)
]]
==構造==
==構造==
 ランヴィエの絞輪の長さは神経線維の種類や太さにもよるが、典型的には1-2 μm程度で、間隔は1-2mm程度である。この間隔は、活動電位の伝播に必要最低限な間隔よりも短い。実際の間隔と必要最低限の間隔の比を安全率(safety factor)と呼ぶ。健常な線維では、安全率は5-7程度と高い<ref name=ref2>'''I. Tasaki'''<br>"Conduction of the nerve impulse"<br>''Handbook of Physiology'' 1959, Section 1, 75</ref>。
 ランヴィエの絞輪の長さは神経線維の種類や太さにもよるが、典型的には1-2 μm程度で、間隔は1-2 mm程度である。この間隔は、活動電位の伝播に必要最低限な間隔よりも短い。実際の間隔と必要最低限の間隔の比を安全率(safety factor)と呼ぶ。健常な線維では、安全率は5-7程度と高い<ref name=ref2>'''I. Tasaki'''<br>"Conduction of the nerve impulse"<br>''Handbook of Physiology'' 1959, Section 1, 75</ref>。


 中枢神経系では[[オリゴデンドロサイト]]が、末梢神経系では[[シュワン細胞]]が髄鞘形成を担うが、ランヴィエの絞輪の微細構造も、中枢と末梢では大きく異なる(図1)。例えば、末梢神経では、髄鞘をつくるシュワン細胞から多くの[[wj:微絨毛|微絨毛]]が絞輪部まで伸び、その先端部はほぼ垂直に[[細胞膜]]近傍に位置する。これに対し、中枢神経では、[[アストロサイト]]がランヴィエの絞輪の近傍まで微細突起を伸ばしている事が多い。どちらにおいても軸索の太さは、ランヴィエの絞輪では細くなっている。
 中枢神経系では[[オリゴデンドロサイト]]が、末梢神経系では[[シュワン細胞]]が髄鞘形成を担うが、ランヴィエの絞輪の微細構造も、中枢と末梢では大きく異なる(図1)<ref name=ref4 />。例えば、末梢神経では、髄鞘をつくるシュワン細胞から多くの[[wj:微絨毛|微絨毛]]が絞輪部まで伸び、その先端部はほぼ垂直に[[細胞膜]]近傍に位置する。これに対し、中枢神経では、[[アストロサイト]]がランヴィエの絞輪の近傍まで微細突起を伸ばしている事が多い。どちらにおいても軸索の太さは、ランヴィエの絞輪では細くなっている。


 太い線維においては、ランヴィエの絞輪部では、髄鞘が被っている部分(インターノード)における軸索径に比べて1/5の程度の細さにまでなる<ref name=ref4><pubmed>9208851</pubmed></ref>。
 太い線維においては、ランヴィエの絞輪部では、髄鞘が被っている部分(インターノード)における軸索径に比べて1/5の程度の細さにまでなる<ref name=ref4><pubmed>9208851</pubmed></ref>。
46行目: 45行目:


 パラノード部の両遠部には、傍パラノード部(juxtaparanode)があり、その両遠部がインターノード部(internode)となる。
 パラノード部の両遠部には、傍パラノード部(juxtaparanode)があり、その両遠部がインターノード部(internode)となる。
[[ファイル:Node of Ranvier2.png|thumb|right|300px|'''図2. 三重蛍光標識されたラット視神経'''<br>
青:Kv1.2, 赤:Caspr (red) 緑 Na+ channels. (文献<ref name=ref5 />より引用)]]


==分子==
==分子==

案内メニュー