「グリア細胞」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
173行目: 173行目:


====同種の細胞====
====同種の細胞====
 発生の項目でも述べたように、ミクログリアの起源は胎児期に[[wj:卵黄嚢|卵黄嚢]]で[[wj:|造血細胞]]から分化して、[[神経管]]に浸入してくる[[wj:|中胚葉]]起源の細胞であることを示す証拠が報告されている。実際に、中枢の損傷部位の周辺をアメーバ運動しているミクログリアの姿は末梢の免疫細胞マクロファージと区別がつかない。形態のみではない、この細胞の細胞表面に発現する分子もマーカーの項で述べるように非常に似通っている。さらに、障害部に到着すると、死んだ細胞をどんどんと食べ始めるの様子も[[wj:|マクロファージ]]と同じである。この両者は同じ起源であると考えてもよいだろう。
 発生の項目でも述べたように、ミクログリアの起源は胎児期に[[wj:卵黄嚢|卵黄嚢]]で[[wj:造血細胞|造血細胞]]から分化して、[[神経管]]に浸入してくる[[wj:中胚葉|中胚葉]]起源の細胞であることを示す証拠が報告されている。実際に、中枢の損傷部位の周辺をアメーバ運動しているミクログリアの姿は末梢の免疫細胞マクロファージと区別がつかない。形態のみではない、この細胞の細胞表面に発現する分子もマーカーの項で述べるように非常に似通っている。さらに、障害部に到着すると、死んだ細胞をどんどんと食べ始めるの様子も[[wj:マクロファージ|マクロファージ]]と同じである。この両者は同じ起源であると考えてもよいだろう。


====マーカー分子====
====マーカー分子====
 ミクログリアはいろいろなマーカーによって検出できる。例えば、[[チアミン・ピロフォスファターゼ]]([[Thiamine pyrophosphatase]]: [[TPPase]])や[[非特異的エステラーゼ]]([[nonspecific esterase]]: [[NSE]])など中枢神経系の細胞の中ではミクログリアに比較的特異的に発現する酵素類を検出する方法である。また、マクロファージの特異的抗体や、免疫関連の[[wj:|補体受容体]]に対する抗体を用いても脳内のミクログリアを免疫染色できる。一方、ミクログリアの細胞表面には[[wj:|主要組織適合遺伝子複合体]]([[wj:|Major histocompatibility complex]]: [[wj:|MHC]])分子が存在し、その抗体はミクログリアのよいマーカーとなる。現在、ミクログリアの最も有効なマーカーとして利用されるのがIba1と呼ばれるタンパク質である。[Iba1]]抗体もミクログリアばかりではなく、マクロファージにも反応する<ref><pubmed>14756805</pubmed></ref>。
 ミクログリアはいろいろなマーカーによって検出できる。例えば、[[チアミン・ピロフォスファターゼ]]([[Thiamine pyrophosphatase]]: [[TPPase]])や[[非特異的エステラーゼ]]([[nonspecific esterase]]: [[NSE]])など中枢神経系の細胞の中ではミクログリアに比較的特異的に発現する酵素類を検出する方法である。また、マクロファージの特異的抗体や、免疫関連の[[wj:補体受容体|補体受容体]]に対する抗体を用いても脳内のミクログリアを免疫染色できる。一方、ミクログリアの細胞表面には[[wj:主要組織適合遺伝子複合体|主要組織適合遺伝子複合体]]([[wikipedia:Major histocompatibility complex|Major histocompatibility complex]]: [[wikipediaMHC|MHC]])分子が存在し、その抗体はミクログリアのよいマーカーとなる。現在、ミクログリアの最も有効なマーカーとして利用されるのがIba1と呼ばれるタンパク質である。[Iba1]]抗体もミクログリアばかりではなく、マクロファージにも反応する<ref><pubmed>14756805</pubmed></ref>。


====ヒト脳における分布量====
====ヒト脳における分布量====
197行目: 197行目:
 脳に整然と配置されているミクログリアが脳細胞を無差別に攻撃するなどありえない。では、どのような条件でミクログリアの活性が高まり、そのようにして特定の損傷を受けた細胞のみを貪食するのか。
 脳に整然と配置されているミクログリアが脳細胞を無差別に攻撃するなどありえない。では、どのような条件でミクログリアの活性が高まり、そのようにして特定の損傷を受けた細胞のみを貪食するのか。


 損傷を受けた脳細胞からはATPが放出される。細胞外液のATP濃度は正常状態では低く保たれているので、ATP濃度の高い部位はそこに損傷細胞が存在することを示す信号になる。ミクログリアは多様なプリン受容体を発現しているが、そのうち、P2X4受容体が刺激されると、ミクログリアの突起はATP濃度の高い方向に向かって伸びて行く<ref><pubmed>17299767</pubmed></ref>。さらに、その部位に近づくと、P2Y12受容体が刺激され、BDNFなどのニューロトロフィンを遊離するのだ<ref><pubmed>20653959</pubmed></ref>。この段階では損傷部位の修復のために機能しているようである。ここまでの過程を見ると、損傷を受けた脳細胞はATPを救助信号として、「私を見つけて、助けて、Find me and help me」と叫んでいるようである。
 損傷を受けた脳細胞からはATPが放出される。細胞外液のATP濃度は正常状態では低く保たれているので、ATP濃度の高い部位はそこに損傷細胞が存在することを示す信号になる。ミクログリアは多様なプリン受容体を発現しているが、そのうち、[[P2X4受容体]]が刺激されると、ミクログリアの突起はATP濃度の高い方向に向かって伸びて行く<ref><pubmed>17299767</pubmed></ref>。さらに、その部位に近づくと、[[P2Y12受容体]]が刺激され、[[BDNF]]などの[[ニューロトロフィン]]を遊離する<ref><pubmed>20653959</pubmed></ref>。この段階では損傷部位の修復のために機能しているようである。ここまでの過程を見ると、損傷を受けた脳細胞はATPを救助信号として、「私を見つけて、助けて、Find me and help me」と叫んでいるようである。


 ところが、その救助がすでに間に合わない状態である場合にミクログリアはアメーバ状に形を変えて、その場に移動する。そして、損傷を受けた細胞を貪食する。この時、貪食する必要のある死んだ細胞を見つけ出しているのだ。これが成り立つためには、死にかかった細胞から出される信号を認知する必要がある。実はミクログリアにはもう一つプリン受容体、P2Y6が存在している。この受容体は不思議なことに、ATPやADPには反応しないのだ。発見以後しばらくはその役目が不明であったが、やがて、P2Y6を活性化するのはウリジン二リン酸(UDP)であることが明らかにされた<ref><pubmed>19262132</pubmed></ref>。UDPはやたらに細胞外に遊離される分子ではない。死にかかった細胞からごく少量遊離されるだけである。P2Y6受容体がUDPで刺激されると、ミクログリアのアメーバ運動が活性化され貪食機能が活性化される。こうして、貪食能が高まったミクログリアが周辺に分布する細胞のすべてを貪食するのはない。もう一つ条件がある。死んで細胞膜が壊れた時に、提示される膜成分のリン脂質の成分であるホスファチジルセリン(phosphatidylserine)である。これを提示していることを認識して、その細胞のみを貪食するのだ。このホスファチジルセリンは「私を食べて信号、Eat me signal」なのである<ref><pubmed>3464483</pubmed></ref>(図15)。ミクログリアは単なる破壊者でも、無差別な掃除係でもない。非常に高度な認識機能を備えた、環境整備係として機能していることがわかる。
 ところが、その救助がすでに間に合わない状態である場合にミクログリアはアメーバ状に形を変えて、その場に移動する。そして、損傷を受けた細胞を貪食する。この時、貪食する必要のある死んだ細胞を見つけ出しているのだ。これが成り立つためには、死にかかった細胞から出される信号を認知する必要がある。実はミクログリアにはもう一つプリン受容体、[[P2Y6]]が存在している。この受容体は不思議なことに、ATPやADPには反応しないのだ。発見以後しばらくはその役目が不明であったが、やがて、P2Y6を活性化するのは[[ウリジン二リン酸]]([[UDP]])であることが明らかにされた<ref><pubmed>19262132</pubmed></ref>
 
 UDPはやたらに細胞外に遊離される分子ではない。死にかかった細胞からごく少量遊離されるだけである。P2Y6受容体がUDPで刺激されると、ミクログリアのアメーバ運動が活性化され貪食機能が活性化される。こうして、貪食能が高まったミクログリアが周辺に分布する細胞のすべてを貪食するのはない。もう一つ条件がある。死んで細胞膜が壊れた時に、提示される膜成分のリン脂質の成分である[[ホスファチジルセリン]]である。これを提示していることを認識して、その細胞のみを貪食するのだ。このホスファチジルセリンは「私を食べて信号、Eat me signal」なのである<ref><pubmed>3464483</pubmed></ref>(図15)。ミクログリアは単なる破壊者でも、無差別な掃除係でもない。非常に高度な認識機能を備えた、環境整備係として機能していることがわかる。


====シナプスの保守点検====
====シナプスの保守点検====
 ミクログリアが高度な仕組みを持つ環境整備係であることはそれだけでもこの細胞が脳内で重要な要素であることを物語っている。しかし、最近は神経回路の保守点検にも関わっている可能性が示唆されている。これも蛍光タンパク質発現させたミクログリアの形態の二光子励起顕微鏡を用いた長時間ライブイメージングによって明らかにされている。先に述べたように静止状態のミクログリア(ラミファイド型)は静止状態とはいいながら、沢山の突起をゆらゆらと動かせている。この突起の動きには生理学的目的があるようで、正常なシナプスには1時間に1回、一回あたり5分間ほど接触することが観察されている。一方、使われないシナプスにはこのような繊細な管理を行われていないのだ<ref><pubmed>19339593</pubmed></ref>。接触時にミクログリアとシナプスの間でどのような情報交換が行われているかは不明だが、ミクログリアの神経回路形成への重要性を示唆する重要な事実である。
 ミクログリアが高度な仕組みを持つ環境整備係であることはそれだけでもこの細胞が脳内で重要な要素であることを物語っている。しかし、最近は神経回路の保守点検にも関わっている可能性が示唆されている。これも蛍光タンパク質発現させたミクログリアの形態の二光子励起顕微鏡を用いた長時間ライブイメージングによって明らかにされている。先に述べたように静止状態のミクログリア(ラミファイド型)は静止状態とはいいながら、沢山の突起をゆらゆらと動かせている。この突起の動きには生理学的目的があるようで、正常なシナプスには1時間に1回、一回あたり5分間ほど接触することが観察されている。一方、使われないシナプスにはこのような繊細な管理を行われていないのだ<ref><pubmed>19339593</pubmed></ref>。接触時にミクログリアとシナプスの間でどのような情報交換が行われているかは不明だが、ミクログリアの神経回路形成への重要性を示唆する重要な事実である。


 ミクログリアがシナプス回路の維持再編に積極的に働いていることの証拠はまだある。視覚回路の中継核である外側膝状体で活発に行われている左右の視覚路の選択の過程である。未熟な視覚回路では左右両側の視神経節細胞からの入力を受けているが、それが発達に応じて主に同側からの入力が除去されて行く。この過程でミクログリアの得意技とも言うべき、不要物処理機能が発揮されるのだ<ref><pubmed>22632727</pubmed></ref>。
 ミクログリアがシナプス回路の維持再編に積極的に働いていることの証拠はまだある。視覚回路の中継核である[[外側膝状体]]で活発に行われている左右の視覚路の選択の過程である。未熟な視覚回路では左右両側の[[視神経節細胞]]からの入力を受けているが、それが発達に応じて主に同側からの入力が除去されて行く。この過程でミクログリアの得意技とも言うべき、不要物処理機能が発揮されるのだ<ref><pubmed>22632727</pubmed></ref>。


 ではこのような選択的な除去はどのように行われるのだろうか。最終的にはミクログリアの貪食機能が発揮されるものと考えられるが、どのようにして不要シナプスを認識しているのだろうか。これには前述の脳内免疫細胞としての性質が使われているらしい。例えば、ミクログリアに発現している補体分子、C3の合成が、その合成の活性化因子Clqの存在により高まり、C3受容体を多く発現しているシナプス部位を認識して除去するという仕組みである<ref><pubmed>18083105</pubmed></ref>。また、MHCのClass1が神経傷害時のシナプス除去に関与している可能性を示唆する証拠もある<ref><pubmed>15591351</pubmed></ref>。ミクログリアが脳内の免疫細胞だと考えられているもののまだその実体は十分に解明されていない。その能力がシナプスの消長に積極的に関わるとすれば、神経回路の構築や維持における最重要因子としてその機能を再認識する必要がある。 
 ではこのような選択的な除去はどのように行われるのだろうか。最終的にはミクログリアの貪食機能が発揮されるものと考えられるが、どのようにして不要シナプスを認識しているのだろうか。これには前述の脳内免疫細胞としての性質が使われているらしい。例えば、ミクログリアに発現している[[wj:補体|補体]]分子、[[C3]]の合成が、その合成の活性化因子[[Clq]]の存在により高まり、C3受容体を多く発現しているシナプス部位を認識して除去するという仕組みである<ref><pubmed>18083105</pubmed></ref>。また、MHCのClass1が神経傷害時のシナプス除去に関与している可能性を示唆する証拠もある<ref><pubmed>15591351</pubmed></ref>。ミクログリアが脳内の免疫細胞だと考えられているもののまだその実体は十分に解明されていない。その能力がシナプスの消長に積極的に関わるとすれば、神経回路の構築や維持における最重要因子としてその機能を再認識する必要がある。 
   
   
[[ファイル:Kudo Fig16.png|thumb|right|350px|'''図16.神経因性疼痛発症におけるミクログリアの関与'''<br>'''A''' 痛覚情報の二次感覚ニューロンへの伝達は抑制性介在ニューロンにより抑制されるので、自動的に弱められる。<br>'''B''' 神経因性疼痛時は活性化されたミクログリアから遊離されるBDNFがK/Cl交換ポンプを抑制するので、二次感覚ニューロン内のClイオンレベルが高まり、抑制性ニューロンからの信号が逆に促進的になり、痛みはむしろ促進される。]]
[[ファイル:Kudo Fig16.png|thumb|right|350px|'''図16.神経因性疼痛発症におけるミクログリアの関与'''<br>'''A''' 痛覚情報の二次感覚ニューロンへの伝達は抑制性介在ニューロンにより抑制されるので、自動的に弱められる。<br>'''B''' 神経因性疼痛時は活性化されたミクログリアから遊離されるBDNFがK/Cl交換ポンプを抑制するので、二次感覚ニューロン内のClイオンレベルが高まり、抑制性ニューロンからの信号が逆に促進的になり、痛みはむしろ促進される。]]


====神経因性疼痛====
====神経因性疼痛====
 ミクログリアが悪玉ではないことは十分に理解できたが、最後に、ミクログリアの関与するやっかいな疾患について述べなければならない。「神経因性疼痛」(neuropathic pain allodynia)である。帯状疱疹の後遺症や手術や怪我の後遺症として、損傷部周辺の触覚が激しい疼痛として感じられる疾患である。その成立メカニズムについては長い間、謎となっていた。しかし、この疼痛のメカニズムにミクログリアが関与していることが明らかになったのだ。
 ミクログリアが悪玉ではないことは十分に理解できたが、最後に、ミクログリアの関与するやっかいな疾患について述べなければならない。「[[神経因性疼痛]]」(neuropathic pain allodynia)である。[[帯状疱疹]]の後遺症や手術や怪我の後遺症として、損傷部周辺の[[触覚]]が激しい[[疼痛]]として感じられる疾患である。その成立メカニズムについては長い間、謎となっていた。しかし、この疼痛のメカニズムにミクログリアが関与していることが明らかになった。


 図16aに示すように、痛覚や触覚に関わる知覚神経信号は脊髄後根から脊髄後角に入力し、そこで、二次知覚ニューロンに乗り換える。このシナプス部位には知覚神経からの側抑制(lateral inhibition)回路が組み込まれており、過剰な入力を和らげている。皮膚に障害が受けた時に痛みは比較的短い時間で和らぐのはこの仕組みによる。この回路にはGABAを伝達物質とする抑制性介在ニューロンが関与している(図16A)。
 図16aに示すように、[[痛覚]]や触覚に関わる知覚神経信号は[[脊髄後根]]から[[脊髄後角]]に入力し、そこで、[[二次知覚ニューロン]]に乗り換える。このシナプス部位には知覚神経からの[[側抑制]](lateral inhibition)回路が組み込まれており、過剰な入力を和らげている。皮膚に障害が受けた時に痛みは比較的短い時間で和らぐのはこの仕組みによる。この回路にはGABAを伝達物質とする抑制性介在ニューロンが関与している(図16A)。


 この部位で生ずる神経因性疼痛の発症メカニズムは次のような仕組みによることが明らかにされている(図16B)。知覚神経の末梢部に激しい損傷があると、知覚ニューロンの入力部位である脊髄後角周辺に多数のミクログリアが集まる。このミクログリアは上述のようにBDNF(brain derived neurotrophic factor)を遊離する。おそらく、損傷を受けた知覚回路の修復のためと考えられる。しかし、このBDNFが二次知覚神経細胞において細胞内のClイオンとKイオンの量をコントロールするためのClイオン/Kイオン交換ポンプを止めてしまうのだ。結果として、二次知覚ニューロン内のClイオン量が異常に増え、Kイオンが減少した状態が作られる。この状態では痛覚や触覚などの入力を側抑制するために遊離されたGABAによって、Clイオンチャンネルが開口すると、細胞外へのClイオンの流出、すなわち脱分極を生じさせることになる。痛みや高まった触感覚を和らげる仕組みが逆に促進してしまうことになるのだ<ref><pubmed>12917686</pubmed></ref>。この状態はミクログリアの活動が続く間は回復することはない。従って、ちょっとした痛みや触覚が異常に強く入力されてしまうのである。触覚も過剰になると痛みと感ずるというやっかいな疾患である。原因が解明されたことによって神経因性疼痛の有効な治療法も開発されてきている。
 この部位で生ずる神経因性疼痛の発症メカニズムは次のような仕組みによることが明らかにされている(図16B)。知覚神経の末梢部に激しい損傷があると、知覚ニューロンの入力部位である脊髄後角周辺に多数のミクログリアが集まる。このミクログリアは上述のように[[brain derived neurotrophic factor]]([[BDNF]])を遊離する。おそらく、損傷を受けた知覚回路の修復のためと考えられる。しかし、このBDNFが二次知覚神経細胞において細胞内のClイオンとKイオンの量をコントロールするための[[Clイオン/Kイオン交換ポンプ]]を止めてしまうのだ。結果として、二次知覚ニューロン内のClイオン量が異常に増え、Kイオンが減少した状態が作られる。この状態では痛覚や触覚などの入力を側抑制するために遊離されたGABAによって、Clイオンチャンネルが開口すると、細胞外へのClイオンの流出、すなわち脱分極を生じさせることになる。痛みや高まった触感覚を和らげる仕組みが逆に促進してしまうことになるのだ<ref><pubmed>12917686</pubmed></ref>。この状態はミクログリアの活動が続く間は回復することはない。従って、ちょっとした痛みや触覚が異常に強く入力されてしまうのである。触覚も過剰になると痛みと感ずるというやっかいな疾患である。原因が解明されたことによって神経因性疼痛の有効な治療法も開発されてきている。


==関連項目==
==関連項目==

案内メニュー