66
回編集
Keijiimoto (トーク | 投稿記録) 編集の要約なし |
Keijiimoto (トーク | 投稿記録) 細編集の要約なし |
||
13行目: | 13行目: | ||
== ''m''<sup>3</sup>''h''と''n''<sup>4</sup> == | == ''m''<sup>3</sup>''h''と''n''<sup>4</sup> == | ||
HodgkinとHuxleyは、voltage-clamp法を用いて活動電位に伴うNa<sup>+</sup>とK<sup>+</sup>のコンダクタンス(通りやすさ、抵抗の逆数) | HodgkinとHuxleyは、voltage-clamp法を用いて活動電位に伴うNa<sup>+</sup>とK<sup>+</sup>のコンダクタンス(通りやすさ、抵抗の逆数)の変化を定量的に解析し、Na<sup>+</sup>とK<sup>+</sup>には別々の通り道があることを示した。そしてNa<sup>+</sup>とK<sup>+</sup>のコンダクタンスがゲート(gate)により開閉されると考えた。 | ||
*Na<sup>+</sup>チャネルは3つの活性化ゲート''m''と不活性化ゲート''h''により開閉される。 | *Na<sup>+</sup>チャネルは3つの活性化ゲート''m''と不活性化ゲート''h''により開閉される。 | ||
*K<sup>+</sup>チャネルは4つの活性化ゲート''n''により開閉される。 | *K<sup>+</sup>チャネルは4つの活性化ゲート''n''により開閉される。 | ||
''m''、''h''、''n'' | ''m''、''h''、''n''は、ゲートが開いている割合を示す値で、単純なTwo-state modelに従う。''m''と''n''は、静止時に閉じており脱分極した時に開く。一方、''h''は静止時に開き脱分極時に閉じる。''m''と''n''ではなく、''m''<sup>3</sup>および''n''<sup>4</sup>としたのは、主に電流の立ち上がりの形をよく再現するためである。 | ||
電流はコンダクタンスと電圧に比例する(''I'' = ''GV''; Ohmの法則)。電圧の大きさは、細胞膜内外のイオン濃度差による電位(平衡電位)を補正しなくてはならない。 従って、 Na<sup>+</sup>とK<sup>+</sup>により担われる電流''I''<sub>Na</sub>と''I''<sub>K</sub>は、Na<sup>+</sup>とK<sup>+</sup>の最大コンダクタンスをそれぞれ ''G''<sup>max</sup><sub>Na</sub>、''G''<sup>max</sup><sub>K</sub> 、平衡電位を''E''<sub>Na</sub>、''E''<sub>K</sub>とすると、 | 電流はコンダクタンスと電圧に比例する(''I'' = ''GV''; Ohmの法則)。電圧の大きさは、細胞膜内外のイオン濃度差による電位(平衡電位)を補正しなくてはならない。 従って、 Na<sup>+</sup>とK<sup>+</sup>により担われる電流''I''<sub>Na</sub>と''I''<sub>K</sub>は、Na<sup>+</sup>とK<sup>+</sup>の最大コンダクタンスをそれぞれ ''G''<sup>max</sup><sub>Na</sub>、''G''<sup>max</sup><sub>K</sub> 、平衡電位を''E''<sub>Na</sub>、''E''<sub>K</sub>とすると、 | ||
33行目: | 33行目: | ||
---- | ---- | ||
''m''、''h''、''n''はTwo-stateモデルに従う値である。 開く速度定数αと閉じる速度定数βはいずれも電位に依存する。 HodgkinとHuxleyは''m''、''h''、''n''のそれぞれについていろいろな電位での | ''m''、''h''、''n''はTwo-stateモデルに従う値である。 開く速度定数αと閉じる速度定数βはいずれも電位に依存する。 HodgkinとHuxleyは''m''、''h''、''n''のそれぞれについていろいろな電位での αとβの値を実験的に測定し、それらを便宜的に次の数式で表した。 | ||
::<math>\alpha_m = \frac{0.1(-V+25)}{\exp\left(\frac{-V+25}{10}\right)-1}</math> | ::<math>\alpha_m = \frac{0.1(-V+25)}{\exp\left(\frac{-V+25}{10}\right)-1}</math> |
回編集