「セロトニン」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
1行目: 1行目:
英語名:serotonin、5-hydroxytryptamine 英略語:5-HT  
英語名:serotonin、5-hydroxytryptamine 英略語:5-HT  


 生理活性アミンの一種で、中枢神経系の伝達物質として働く。脳機能の調節において重要な役割を果たすと考えられているが、生体内の大部分(~95%)のセロトニンは末梢に存在し<ref><pubmed> 17241888 </pubmed></ref> <ref name="ref2"><pubmed> 18471139 </pubmed></ref>、血管収縮、腸管蠕動運動、血小板凝縮などの調節因子として末梢でも多様な作用を持つ。生体内のセロトニンは必須アミノ酸のトリプトファンから合成され、小胞モノアミントランスポーターによって細胞内の小胞に取り込まれる。開口放出によって細胞外に放出されたセロトニンは標的細胞の受容体を活性化してその効果を発揮し、セロトニントランスポーターによって細胞内に取り込まれる。
 生理活性アミンの一種で、[[中枢神経]]系の[[伝達物質]]として働く。脳機能の調節において重要な役割を果たすと考えられているが、生体内の大部分(~95%)のセロトニンは末梢に存在し<ref><pubmed> 17241888 </pubmed></ref> <ref name="ref2"><pubmed> 18471139 </pubmed></ref>、血管収縮、腸管蠕動運動、血小板凝縮などの調節因子として末梢でも多様な作用を持つ。生体内のセロトニンは必須アミノ酸のトリプトファンから合成され、[[小胞モノアミントランスポーター]]によって[[細胞]]内の小胞に取り込まれる。開口放出によって細胞外に放出されたセロトニンは標的細胞の受容体を活性化してその効果を発揮し、セロトニントランスポーターによって細胞内に取り込まれる。


[[Image:5ht figure.jpg|frame|right|セロトニンの生合成と代謝]]  
[[Image:5ht figure.jpg|frame|right|セロトニンの生合成と代謝]]  
8行目: 8行目:
== 生合成  ==
== 生合成  ==


 生体内のセロトニンは、トリプトファンからトリプトファン水酸化酵素(tryptophan hydoxylase、TPH)、芳香族L-アミノ酸脱炭酸酵素(aromatic L-amino acid decarboxylase、AAAD)による二段階の酵素反応によって合成される。AAADはドーパミンの生合成経路でも機能する。TPHはセロトニン合成の律速酵素で、TPH1とTPH2の二種類のアイソフォームが存在する。TPH1は腸クロム親和性細胞などの主に末梢のセロトニン産生細胞に、TPH2は主に中枢のセロトニン神経系の細胞に発現する。TPH1欠損マウスでは血中のセロトニン濃度が約95%低下し、TPH2欠損マウスでは中枢神経系のセロトニン含量が約95%低下し、末梢と中枢におけるそれぞれの酵素の重要性を示している。しかし、TPH1とTPH2の両方を欠損するマウスでも血中、中枢ともに数%のセロトニンは残存する<ref name="ref3"><pubmed> 18923670 </pubmed></ref>。TPHはテトラヒドロビオプテリン(Tetrahydrobiopterin、BH 4)を補因子とし、BH 4の欠乏はセロトニンの欠乏を伴う。BH 4はドーパミン生合成に必要なチロシンリン酸化酵素や一酸化窒素合成酵素の補因子としても働き、セロトニンやドーパミンの放出に影響を及ぼすことも示されている<ref><pubmed> 21867484 </pubmed></ref>。  
 生体内のセロトニンは、トリプトファンからトリプトファン水酸化[[酵素]](tryptophan hydoxylase、TPH)、芳香族L-アミノ酸脱炭酸酵素(aromatic L-amino acid decarboxylase、AAAD)による二段階の酵素反応によって合成される。AAADは[[ドーパミン]]の生合成経路でも機能する。TPHはセロトニン合成の律速酵素で、TPH1とTPH2の二種類のアイソフォームが存在する。TPH1は腸クロム親和性細胞などの主に末梢のセロトニン産生細胞に、TPH2は主に中枢の[[セロトニン神経系]]の細胞に発現する。TPH1欠損マウスでは血中のセロトニン濃度が約95%低下し、TPH2欠損マウスでは中枢神経系のセロトニン含量が約95%低下し、末梢と中枢におけるそれぞれの酵素の重要性を示している。しかし、TPH1とTPH2の両方を欠損するマウスでも血中、中枢ともに数%のセロトニンは残存する<ref name="ref3"><pubmed> 18923670 </pubmed></ref>。TPHはテトラヒドロビオプテリン(Tetrahydrobiopterin、BH 4)を補因子とし、BH 4の欠乏はセロトニンの欠乏を伴う。BH 4はドーパミン生合成に必要な[[チロシンリン酸化]]酵素や一酸化窒素合成酵素の補因子としても働き、セロトニンやドーパミンの放出に影響を及ぼすことも示されている<ref><pubmed> 21867484 </pubmed></ref>。  




== 代謝  ==
== 代謝  ==


 セロトニンはモノアミン酸化酵素(monoamine oxidase、MAO)、さらにアルデヒド脱水素酵素によって代謝されて5-ヒドロキシインドール酢酸(5-hydroxyindoleacetic acid、5-HIAA)を生じる。5-HIAAの脳脊髄液中濃度が中枢セロトニン含量の間接的な指標としてしばしば用いられるが、セロトニン代謝が変化した場合、セロトニンと5-HIAA濃度は逆方向に変化するため、5-HIAA濃度はセロトニン濃度を必ずしも反映しない。MAOにはMAO<sub>A</sub>とMAO<sub>B</sub>のアイソザイムが存在し、セロトニンは主にMAO<sub>A</sub>によって代謝される<ref name="ref5"><pubmed> 10202537 </pubmed></ref>。大部分のMAO<sub>A</sub>はミトコンドリアの外膜に局在しており<ref><pubmed> 8330200 </pubmed></ref>、グリア細胞にも発現が見られる<ref name="ref7"><pubmed> 3399053 </pubmed></ref>。基質特異性から予想される局在とは異なり、セロトニン神経には主にMAO<sub>B</sub>が発現しておりMAO<sub>A</sub>の発現は非常に少ない<ref name="ref5" /> <ref name="ref7" />。しかし、MAO<sub>A</sub>欠損マウスでは脳のセロトニン含量が増え<ref><pubmed> 7792602 </pubmed></ref>、MAO<sub>B</sub>欠損マウスではそのような変化は生じないため<ref><pubmed> 9326944 </pubmed></ref>、MAO<sub>A</sub>が脳内のセロトニン代謝に重要であることは間違いない。  
 セロトニンはモノアミン酸化酵素(monoamine oxidase、MAO)、さらにアルデヒド脱水素酵素によって代謝されて5-ヒドロキシインドール酢酸(5-hydroxyindoleacetic acid、5-HIAA)を生じる。5-HIAAの脳脊髄液中濃度が中枢セロトニン含量の間接的な指標としてしばしば用いられるが、セロトニン代謝が変化した場合、セロトニンと5-HIAA濃度は逆方向に変化するため、5-HIAA濃度はセロトニン濃度を必ずしも反映しない。MAOにはMAO<sub>A</sub>とMAO<sub>B</sub>のアイソザイムが存在し、セロトニンは主にMAO<sub>A</sub>によって代謝される<ref name="ref5"><pubmed> 10202537 </pubmed></ref>。大部分のMAO<sub>A</sub>は[[ミトコンドリア]]の外膜に局在しており<ref><pubmed> 8330200 </pubmed></ref>、[[グリア細胞]]にも発現が見られる<ref name="ref7"><pubmed> 3399053 </pubmed></ref>。基質特異性から予想される局在とは異なり、セロトニン神経には主にMAO<sub>B</sub>が発現しておりMAO<sub>A</sub>の発現は非常に少ない<ref name="ref5" /> <ref name="ref7" />。しかし、MAO<sub>A</sub>欠損マウスでは脳のセロトニン含量が増え<ref><pubmed> 7792602 </pubmed></ref>、MAO<sub>B</sub>欠損マウスではそのような変化は生じないため<ref><pubmed> 9326944 </pubmed></ref>、MAO<sub>A</sub>が脳内のセロトニン代謝に重要であることは間違いない。  




== セロトニントランスポーター  ==
== セロトニントランスポーター  ==


 イオンの電気化学的勾配によって駆動される12回膜貫通型の細胞膜上のトランスポーターで、セロトニン神経や血小板に発現している。血小板にはセロトニン産生酵素はほとんど無く、血小板内のセロトニンはトランスポーターによって血中から取り込まれたものである<ref name="ref2" />。細胞外のNa<sup>+</sup>、Cl<sup>-</sup>と共にセロトニンが細胞内に輸送され、細胞内のK<sup>+</sup>が逆向きに輸送される。K<sup>+</sup>は輸送に必須ではないが、輸送速度を上昇させる<ref><pubmed> 489585 </pubmed></ref>。セロトニントランスポーターを阻害すると細胞外のセロトニンの基底濃度が上昇し、さらに一時的にセロトニン濃度が上昇した際にその回復が遅くなるため、標的細胞に対するセロトニンの作用が増強される<ref><pubmed> 12151556 </pubmed></ref> <ref><pubmed> 14530210 </pubmed></ref>。抗うつ薬などの向精神薬にはセロトニントランスポーターの阻害作用を持つものが多い。
 イオンの電気化学的勾配によって駆動される12回膜貫通型の細胞膜上のトランスポーターで、セロトニン神経や血小板に発現している。血小板にはセロトニン産生酵素はほとんど無く、血小板内のセロトニンはトランスポーターによって血中から取り込まれたものである<ref name="ref2" />。細胞外のNa<sup>+</sup>、Cl<sup>-</sup>と共にセロトニンが細胞内に輸送され、細胞内のK<sup>+</sup>が逆向きに輸送される。K<sup>+</sup>は輸送に必須ではないが、輸送速度を上昇させる<ref><pubmed> 489585 </pubmed></ref>。セロトニントランスポーターを阻害すると細胞外のセロトニンの基底濃度が上昇し、さらに一時的にセロトニン濃度が上昇した際にその回復が遅くなるため、標的細胞に対するセロトニンの作用が増強される<ref><pubmed> 12151556 </pubmed></ref> <ref><pubmed> 14530210 </pubmed></ref>。[[抗うつ薬]]などの向精神薬にはセロトニントランスポーターの阻害作用を持つものが多い。




== セロトニン受容体  ==
== セロトニン受容体  ==


 5-HT<sub>1</sub>から5-HT<sub>7</sub>の7種類のサブファミリーからなり、14個のサブタイプが存在する<ref name="ref13"><pubmed> 10462127 </pubmed></ref> <ref name="ref14"><pubmed> 18615128 </pubmed></ref> <ref name="ref15"><pubmed> 18676031 </pubmed></ref> <ref name="ref16"><pubmed> 20945968 </pubmed></ref>。イオンチャネル型の5-HT<sub>3</sub>を除いて他は全てG蛋白質に共役する受容体であり、遅い膜電位変化やシナプス伝達の修飾に関与する。脳には全ての受容体が発現している。
 5-HT<sub>1</sub>から5-HT<sub>7</sub>の7種類のサブファミリーからなり、14個のサブタイプが存在する<ref name="ref13"><pubmed> 10462127 </pubmed></ref> <ref name="ref14"><pubmed> 18615128 </pubmed></ref> <ref name="ref15"><pubmed> 18676031 </pubmed></ref> <ref name="ref16"><pubmed> 20945968 </pubmed></ref>。イオンチャネル型の5-HT<sub>3</sub>を除いて他は全てG[[蛋白質]]に共役する受容体であり、遅い膜電位変化や[[シナプス伝達]]の修飾に関与する。脳には全ての受容体が発現している。


==== 5-HT<sub>1</sub>受容体  ====
==== 5-HT<sub>1</sub>受容体  ====
5-HT<sub>1A</sub>、5-HT<sub>1B</sub>、5-HT<sub>1D</sub>、5-HT<sub>1E</sub>、5-HT<sub>1F</sub>の5個のサブタイプが存在する。5-HT<sub>1C</sub>は5-HT<sub>2C</sub>に再分類されたため存在しない。主な細胞内シグナル経路はGi/oを介したcAMP濃度の低下で、フォスフォリパーゼCやNa<sup>+</sup>/H<sup>+</sup>交換輸送体など他のシグナル経路も活性化し得る<ref name="ref15" />。5-HT<sub>1A</sub>受容体はセロトニン受容体の中で最も広く発現しており、受容体活性化によって細胞膜の過分極を引き起こす。しかし、この過分極は主にGタンパク質共役型内向き整流性カリウムの活性化によるもので、cAMPには依存しない<ref name="ref14" />。グルタミン酸作動性の興奮性シナプス伝達、GABA作動性の抑制シナプス伝達を共に抑制し、自己受容体としてセロトニン神経の活動に負のフィードバックをかける<ref name="ref15" /> <ref name="ref16" />。5-HT<sub>1B</sub>受容体も自己受容体としてセロトニンの放出を抑制するほか、グルタミン酸、GABA、ドーパミン、アセチルコリンなどの放出を抑制する<ref name="ref16" />。'''  
5-HT<sub>1A</sub>、5-HT<sub>1B</sub>、5-HT<sub>1D</sub>、5-HT<sub>1E</sub>、5-HT<sub>1F</sub>の5個のサブタイプが存在する。5-HT<sub>1C</sub>は5-HT<sub>2C</sub>に再分類されたため存在しない。主な細胞内シグナル経路はGi/oを介したcAMP濃度の低下で、[[フォスフォリパーゼ]]CやNa<sup>+</sup>/H<sup>+</sup>交換輸送体など他のシグナル経路も活性化し得る<ref name="ref15" />。5-HT<sub>1A</sub>受容体はセロトニン受容体の中で最も広く発現しており、受容体活性化によって細胞膜の過分極を引き起こす。しかし、この過分極は主にGタンパク質共役型内向き整流性カリウムの活性化によるもので、cAMPには依存しない<ref name="ref14" />。[[グルタミン酸]]作動性の興奮性シナプス伝達、GABA作動性の抑制シナプス伝達を共に抑制し、自己受容体としてセロトニン神経の活動に負のフィードバックをかける<ref name="ref15" /> <ref name="ref16" />。5-HT<sub>1B</sub>受容体も自己受容体としてセロトニンの放出を抑制するほか、グルタミン酸、GABA、ドーパミン、[[アセチルコリン]]などの放出を抑制する<ref name="ref16" />。'''  


==== 5-HT<sub>2</sub>受容体 ====
==== 5-HT<sub>2</sub>受容体 ====
35行目: 35行目:


==== 5-HT<sub>4</sub>受容体 ====
==== 5-HT<sub>4</sub>受容体 ====
 Gsに共役し、cAMP濃度を上昇させる。リガンド非依存性のconstitutive activityを持ち、多くの(~10)スプライシングバリアントが存在する。受容体活性化によって活動電位後の過分極の抑制と脱分極を生じる。活動電位後の過分極の抑制はcAMP上昇によるカルシウム依存性カリウムコンダクタンスの抑制による<ref><pubmed> 7838128 </pubmed></ref>。グルタミン酸作動性シナプス伝達を抑制<ref name="ref14" />又は増強し<ref><pubmed> 18550770 </pubmed></ref>、海馬、扁桃体においてシナプス伝達の長期増強を促進する<ref><pubmed> 19086256 </pubmed></ref>。PKAを介してGABAA受容体を修飾し<ref name="ref14" />、自発性抑制性シナプス応答を活動依存的に二方向性に変化させる<ref><pubmed> 11986365 </pubmed></ref>。  
 Gsに共役し、cAMP濃度を上昇させる。リガンド非依存性のconstitutive activityを持ち、多くの(~10)スプライシングバリアントが存在する。受容体活性化によって活動電位後の過分極の抑制と脱分極を生じる。活動電位後の過分極の抑制はcAMP上昇によるカルシウム依存性カリウムコンダクタンスの抑制による<ref><pubmed> 7838128 </pubmed></ref>。グルタミン酸作動性シナプス伝達を抑制<ref name="ref14" />又は増強し<ref><pubmed> 18550770 </pubmed></ref>、[[海馬]]、[[扁桃体]]においてシナプス伝達の長期増強を促進する<ref><pubmed> 19086256 </pubmed></ref>。PKAを介してGABAA受容体を修飾し<ref name="ref14" />、自発性抑制性シナプス応答を活動依存的に二方向性に変化させる<ref><pubmed> 11986365 </pubmed></ref>。  


==== 5-HT<sub>5</sub>受容体 ====
==== 5-HT<sub>5</sub>受容体 ====
54行目: 54行目:
== 精神疾患との関連  ==
== 精神疾患との関連  ==


 セロトニントランスポーターやセロトニン代謝酵素の阻害薬、セロトニン受容体拮抗能を持つ薬物が精神疾患の治療薬として用いられており(セロトニン神経系、抗うつ薬、抗精神病薬などの項目を参照)、セロトニン神経系の何らかの異常が精神疾患に関与すると考えられている。特にうつ病との関連は一般にも知られているが、その詳細は明らかではない。古典的なセロトニン仮説では脳内セロトニンレベルの低下、もしくはセロトニン神経系の機能低下がうつ病の原因とされたが、それを支持する直接的な証拠はない<ref><pubmed> 18585794 </pubmed></ref>。トリプトファンの欠乏によって実験的に一過性のセロトニンレベルの低下を生じさせても健常者の被験者では気分の変化は生じない。一方で、うつ病の罹患歴のある被験者では抑うつ気分が生じる。従って、うつ病に伴ってセロトニン神経系に変化が生じる可能性はあるが、それが疾患の原因もしくは病態基盤に関与するかどうかは不明である。うつ病に限らず、精神疾患におけるセロトニン系の異常の可能性は、病態生理学的事実よりも主に治療薬の作用部位に基づいて推測されたものであり、病態仮説の域を出るものではない。  
 セロトニントランスポーターやセロトニン代謝酵素の阻害薬、セロトニン受容体拮抗能を持つ薬物が[[精神疾患]]の治療薬として用いられており(セロトニン神経系、抗うつ薬、[[抗精神病薬]]などの項目を参照)、セロトニン神経系の何らかの異常が精神疾患に関与すると考えられている。特に[[うつ病]]との関連は一般にも知られているが、その詳細は明らかではない。古典的なセロトニン仮説では脳内セロトニンレベルの低下、もしくはセロトニン神経系の機能低下がうつ病の原因とされたが、それを支持する直接的な証拠はない<ref><pubmed> 18585794 </pubmed></ref>。トリプトファンの欠乏によって実験的に一過性のセロトニンレベルの低下を生じさせても健常者の被験者では気分の変化は生じない。一方で、うつ病の罹患歴のある被験者では抑うつ気分が生じる。従って、うつ病に伴ってセロトニン神経系に変化が生じる可能性はあるが、それが疾患の原因もしくは病態基盤に関与するかどうかは不明である。うつ病に限らず、精神疾患におけるセロトニン系の異常の可能性は、病態生理学的事実よりも主に治療薬の作用部位に基づいて推測されたものであり、病態仮説の域を出るものではない。  




案内メニュー