「Nogo」の版間の差分

ナビゲーションに移動 検索に移動
282 バイト除去 、 2012年2月16日 (木)
編集の要約なし
編集の要約なし
編集の要約なし
17行目: 17行目:
 細胞内では、他のreticulonファミリー蛋白と同様に、小胞体もしくは図2に示されるように細胞表面に発現していると考えられている。  
 細胞内では、他のreticulonファミリー蛋白と同様に、小胞体もしくは図2に示されるように細胞表面に発現していると考えられている。  


 神経系においては、発生時期には、神経芽細胞や移動中の幼弱な神経細胞に発現が報告されている。一方、生後および成獣においては主として希突起膠細胞そして、一部の神経細胞に発現が認められると報告されている。
 神経系においては、発生時期には、神経芽細胞や移動中の幼弱な神経細胞に発現が報告されている。一方、生後および成獣においては主として希突起膠細胞そして、一部の神経細胞に発現が認められると報告されている。  


[[Image:Nogo signal.jpg|frame|right|500px]]
[[Image:Nogo signal.jpg|frame|right|500px]]  


= 蛋白の機能&nbsp;<br>  =
= 蛋白の機能&nbsp;<br>  =
25行目: 25行目:
=== <span style="font-weight: bold;">成体神経細胞に対する軸索伸展阻害作用</span>  ===
=== <span style="font-weight: bold;">成体神経細胞に対する軸索伸展阻害作用</span>  ===


==== ミエリン由来軸索伸展阻害分子の作用とは ====
==== ミエリン由来軸索伸展阻害分子の作用とは ====


 今からおよそ80年前のスペインの神経学者Ramon y Cajal、その後のAguayoらの実験により、神経細胞自体には再生する力があり、神経細胞を取り巻く環境が再生に適していないのではないかと考えられるようになる。その候補分子の一つとして、ミエリンが神経突起の伸展を抑制することが報告されたことから、ミエリンの中に再生を阻害し  
 今からおよそ80年前のスペインの神経学者Ramon y Cajal、その後のAguayoらの実験により、神経細胞自体には再生する力があり、神経細胞を取り巻く環境が再生に適していないのではないかと考えられるようになる。その候補分子の一つとして、ミエリンが神経突起の伸展を抑制することが報告されたことから、ミエリンの中に再生を阻害し  


ている分子が存在していると考えられた。そして、Schwabらにより、ミエリンの各フラクションに対する抗体が作成され、IN-1抗体が発見される。IN-1はミエリンの作用を打ち消し、また、IN-1抗体を脊髄損傷させたラットに投与すると、軸索再生と運動機能の回復が認められることが報告された。その後、3つのグループによりIN-1抗体の認識するペプチド配列をもとに、目的の蛋白がクローニングされ、Nogoと名付けられた。
ている分子が存在していると考えられた。そして、Schwabらにより、ミエリンの各フラクションに対する抗体が作成され、IN-1抗体が発見される。IN-1はミエリンの作用を打ち消し、また、IN-1抗体を脊髄損傷させたラットに投与すると、軸索再生と運動機能の回復が認められることが報告された。その後、3つのグループによりIN-1抗体の認識するペプチド配列をもとに、目的の蛋白がクローニングされ、Nogoと名付けられた。  


==== 受容体と細胞内シグナル  ====
==== 受容体と細胞内シグナル  ====


  StrittmatterらはNogo-66の受容体Nogo受容体NgRを同定した。NgRは細胞内ドメインをもたないGPIアンカー型蛋白であり、Nogo-66に対し高親和性を示す。更に、そのシグナル伝達の受容体が、神経栄養因子の受容体であるp75受容体であることが証明された<ref><pubmed> 12422217</pubmed></ref>。また、その細胞内へのシグナルはRho/ROCK経路を介した、細胞骨格制御であると報告されている。<br> しかしながらp75/Nogo受容体のみでは、ある種の細胞ではリガンドで刺激してもRhoが活性化しない。そこでLingo-1がp75/Nogo受容体コンポーネントとして重要と報告され、p75/Nogo受容体/Lingo-1という受容体複合によりRhoが活性化されて、軸索伸展が阻止されるという基本モデルが完成した(図2左側)<ref><pubmed> 14966521</pubmed></ref>。<br> さらに最近になって、Tessier-Lavigneのグループは、Nogo-66に対する受容体をスクリーニングし、NgRと共に、paired immunoglobulin-like receptor B(PirB)を報告した。PirBとNgRの両方を阻害することにより、ミエリンや、Nogo-66の軸索伸展阻害作用のほぼ完全な消失が証明された。<ref><pubmed> 18988857  </pubmed></ref><br>
  StrittmatterらはNogo-66の受容体Nogo受容体NgRを同定した。NgRは細胞内ドメインをもたないGPIアンカー型蛋白であり、Nogo-66に対し高親和性を示す。更に、そのシグナル伝達の受容体が、神経栄養因子の受容体であるp75受容体であることが証明された<ref><pubmed> 12422217</pubmed></ref>。また、その細胞内へのシグナルはRho/ROCK経路を介した、細胞骨格制御であると報告されている。<br> しかしながらp75/Nogo受容体のみでは、ある種の細胞ではリガンドで刺激してもRhoが活性化しない。そこでLingo-1がp75/Nogo受容体コンポーネントとして重要と報告され、p75/Nogo受容体/Lingo-1という受容体複合によりRhoが活性化されて、軸索伸展が阻止されるという基本モデルが完成した(図2左側)<ref><pubmed> 14966521</pubmed></ref>。<br> さらに最近になって、Tessier-Lavigneのグループは、Nogo-66に対する受容体をスクリーニングし、NgRと共に、paired immunoglobulin-like receptor B(PirB)を報告した。PirBとNgRの両方を阻害することにより、ミエリンや、Nogo-66の軸索伸展阻害作用のほぼ完全な消失が証明された。<ref><pubmed> 18988857  </pubmed></ref><br>  


==== ミエリン由来軸索伸展阻害因子のin vivoにおける作用  ====
==== ミエリン由来軸索伸展阻害因子のin vivoにおける作用  ====


 Nogoは当初、IN-1抗体や、NEP1-40という阻害ペプチドを用いて、脊髄損傷モデルを治療できると報告され、in vivoで再生阻害蛋白として働くと考えられていた。しかし、Nogoのノックアウトマウスを3つのグループが独自に作成し、脊髄損傷後の軸索再生を評価したが、グループ間でけっかがこ明らかな、軸索再生は認められなかったものから一部再生が認められるというものまで結果が食い違って報告された。また、最近になり、主要な再生阻害因子(MAG,Nogo,OMgp)のトリプルノックアウトマウスにおいても、脊髄損傷モデルが作成されたが、再生の促進が認められないと報告された。
 Nogoは当初、IN-1抗体や、NEP1-40という阻害ペプチドを用いて、脊髄損傷モデルを治療できると報告され、in vivoで再生阻害蛋白として働くと考えられていた。しかし、Nogoのノックアウトマウスを3つのグループが独自に作成し、脊髄損傷後の軸索再生を評価したが、グループ間で結果が異なった。また、最近になり、主要な再生阻害因子(MAG,Nogo,OMgp)のトリプルノックアウトマウスにおいても、脊髄損傷モデルが作成されたが、再生の促進が認められないと報告された。<br><br>  
 
 このことから、<br><br>  


=== その他の機能  ===
=== その他の機能  ===
49行目: 47行目:
*βセクレターゼ活性の制御によるAPPの切断を制御すること
*βセクレターゼ活性の制御によるAPPの切断を制御すること


が報告されている。明確な証明はないが、正常において、ミエリンや、ミエリン由来の軸索伸展阻害因子は、軸索の余計な芽生えや分枝が起こることを防ぐことにより、正常な軸索の状態を維持するのに役立っているのではないかという考えが、昔から提唱されてきたが、今のところそれを明確に証明する研究は報告されていないようである。参考文献<ref><pubmed> 21045861 </pubmed></ref><br>  
が報告されている。明確な証明はないが、正常において、ミエリンや、ミエリン由来の軸索伸展阻害因子は、軸索の余計な芽生えや分枝が起こることを防ぐことにより、正常な軸索の状態を維持するのに役立っているのではないかという考えが、昔から提唱されてきた。<ref><pubmed> 21045861 </pubmed></ref><br>  


<br>  
<br>  
151

回編集

案内メニュー