「ロドプシン」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
10行目: 10行目:




= '''ロドプシン分子'''  =
= ロドプシン分子 =


== '''ロドプシンの基本構造''' ==
== ロドプシンの基本構造 ==


=== 発色団レチナール ===
=== 発色団レチナール ===
30行目: 30行目:
 ロドプシンにはヘリックス7とC末端の間に[[wikipedia:JA:翻訳後修飾|翻訳後修飾]]([[パルミチル化]])を受ける[[wikipedia:JA:システイン|システイン]]残基が存在し、結合したパルミチン酸は[[wikipedia:JA:脂質二重膜|脂質二重膜]]に挿入されると考えられている。そのため、ヘリックス7とシステイン残基との間が細胞質側のもう一つのループとなり、この領域はさらにヘリックス構造を形成している。このヘリックスはヘリックス8と呼ばれている。膜表面に存在するH8は[[wikipedia:JA:両親媒性|両親媒性]]のヘリックスで膜側に疎水性の残基を含んでいる(図2参照)。  
 ロドプシンにはヘリックス7とC末端の間に[[wikipedia:JA:翻訳後修飾|翻訳後修飾]]([[パルミチル化]])を受ける[[wikipedia:JA:システイン|システイン]]残基が存在し、結合したパルミチン酸は[[wikipedia:JA:脂質二重膜|脂質二重膜]]に挿入されると考えられている。そのため、ヘリックス7とシステイン残基との間が細胞質側のもう一つのループとなり、この領域はさらにヘリックス構造を形成している。このヘリックスはヘリックス8と呼ばれている。膜表面に存在するH8は[[wikipedia:JA:両親媒性|両親媒性]]のヘリックスで膜側に疎水性の残基を含んでいる(図2参照)。  


== '''翻訳後修飾'''  ==
== 翻訳後修飾 ==
 視細胞の[[wikipedia:JA:ER|ER]]で生合成されたオプシンは外節につながる繊毛部分に輸送され、外節の根元から生成する新たな円盤膜に取り込まれていく。前述したように、光受容体であるロドプシンは翻訳後にレチナールを取り込む必要があるが、それ以外にも円盤膜に運ばれるまでにいくつかの翻訳後修飾を受ける。ロドプシンの大きな特徴の一つがC110とC187の間に形成される[[wikipedia:JA:S−S結合|S−S結合]]である(図2参照)。このジスフィルド結合は多くの[[GPCR]]でも保存されておりECL2とH3を架橋することによって構造安定化に寄与している。  
 視細胞の[[wikipedia:JA:ER|ER]]で生合成されたオプシンは外節につながる繊毛部分に輸送され、外節の根元から生成する新たな円盤膜に取り込まれていく。前述したように、光受容体であるロドプシンは翻訳後にレチナールを取り込む必要があるが、それ以外にも円盤膜に運ばれるまでにいくつかの翻訳後修飾を受ける。ロドプシンの大きな特徴の一つがC110とC187の間に形成される[[wikipedia:JA:S−S結合|S−S結合]]である(図2参照)。このジスフィルド結合は多くの[[GPCR]]でも保存されておりECL2とH3を架橋することによって構造安定化に寄与している。  


37行目: 37行目:
[[Image:Rhodopsin structure.png|thumb|right|300px|'''図2:ロドプシンの立体構造モデル'''<br />a:基底状態のロドプシンの立体構造(PDBID:1U19)。H1を青色で示しH8をオレンジ色で示している。7本の膜貫通ヘリックスに加えて膜面に平行なH8が特徴的である。H3は大きく傾いていて細胞質側はH4とH5の間に入り込んでいる。上が円板膜内側、下がGタンパク質と相互作用する細胞質側である。手前のH7にレチナール(11−シス)とその結合部位であるK296、そしてシッフ塩基の対イオンとして機能するH3のE113のアミノ酸、C110-C187のジスフィルド結合、細胞質側にはH3にERYモチーフH7にはNPXXYモチーフのアミノ酸を示している。<br />b:活性化に伴う構造変化。[[wikipedia:JA:基底状態|基底状態]](緑色PDBID:1U19)と較べて[[wikipedia:JA:活性状態|活性状態]]は(オレンジ色PDBID:3PQR)H6が大きく外側に動きH5も細胞質側に伸びるている。また基底状態ではH3とH6間のイオニックロックの相互作用が活性状態では解除されR135はNPXXYモチーフやY223等と新たな相互作用を形成する。]]  
[[Image:Rhodopsin structure.png|thumb|right|300px|'''図2:ロドプシンの立体構造モデル'''<br />a:基底状態のロドプシンの立体構造(PDBID:1U19)。H1を青色で示しH8をオレンジ色で示している。7本の膜貫通ヘリックスに加えて膜面に平行なH8が特徴的である。H3は大きく傾いていて細胞質側はH4とH5の間に入り込んでいる。上が円板膜内側、下がGタンパク質と相互作用する細胞質側である。手前のH7にレチナール(11−シス)とその結合部位であるK296、そしてシッフ塩基の対イオンとして機能するH3のE113のアミノ酸、C110-C187のジスフィルド結合、細胞質側にはH3にERYモチーフH7にはNPXXYモチーフのアミノ酸を示している。<br />b:活性化に伴う構造変化。[[wikipedia:JA:基底状態|基底状態]](緑色PDBID:1U19)と較べて[[wikipedia:JA:活性状態|活性状態]]は(オレンジ色PDBID:3PQR)H6が大きく外側に動きH5も細胞質側に伸びるている。また基底状態ではH3とH6間のイオニックロックの相互作用が活性状態では解除されR135はNPXXYモチーフやY223等と新たな相互作用を形成する。]]  


== '''膜環境'''  ==
== 膜環境 ==


 膜タンパク質であるロドプシンの分子特性はその膜環境に大きく依存する。ただし、ヘリックス領域に囲まれている発色団の光化学的な特性([[wikipedia:JA:分子吸光係数|分子吸光係数]]、[[wikipedia:JA:量子収率|量子収率]]、[[wikipedia:JA:光感受性|光感受性]]など)は膜環境による影響を受けにくい。一方で、中間体や活性状態の平衡、寿命や生成速度等は膜環境の影響を顕著に受ける。  
 膜タンパク質であるロドプシンの分子特性はその膜環境に大きく依存する。ただし、ヘリックス領域に囲まれている発色団の光化学的な特性([[wikipedia:JA:分子吸光係数|分子吸光係数]]、[[wikipedia:JA:量子収率|量子収率]]、[[wikipedia:JA:光感受性|光感受性]]など)は膜環境による影響を受けにくい。一方で、中間体や活性状態の平衡、寿命や生成速度等は膜環境の影響を顕著に受ける。  
43行目: 43行目:
 桿体外節の円盤膜はPC([[wikipedia:phosphatidylcholine|phosphatidylcholine]])やPE([[wikipedia:phosphatidylethanolamine|phosphatidylethanolamine]])を主成分とし、他にもPS([[wikipedia:phosphatidylserine|phosphatidylserine]])やPI([[wikipedia:phosphatidylinositol|phosphatidylinositol]])を含むことが知られている。また膜の[[wikipedia:JA:コレステロール|コレステロール]]含有量によってロドプシンの活性状態とその前駆体の平衡が変化することが知られている。  
 桿体外節の円盤膜はPC([[wikipedia:phosphatidylcholine|phosphatidylcholine]])やPE([[wikipedia:phosphatidylethanolamine|phosphatidylethanolamine]])を主成分とし、他にもPS([[wikipedia:phosphatidylserine|phosphatidylserine]])やPI([[wikipedia:phosphatidylinositol|phosphatidylinositol]])を含むことが知られている。また膜の[[wikipedia:JA:コレステロール|コレステロール]]含有量によってロドプシンの活性状態とその前駆体の平衡が変化することが知られている。  


== '''シッフ塩基プロトン・対イオン'''  ==
== シッフ塩基プロトン・対イオン ==
 ロドプシン中でのレチナールはリシン残基とシッフ塩基結合をしている。分子内でレチナールが共有結合しているのは、いつでも光受容出来るように発色団をタンパク質内に留めておく働きがある。さらにシッフ塩基を介したこの共有結合はロドプシンの機能発現にも重要な役割を果たしている。  
 ロドプシン中でのレチナールはリシン残基とシッフ塩基結合をしている。分子内でレチナールが共有結合しているのは、いつでも光受容出来るように発色団をタンパク質内に留めておく働きがある。さらにシッフ塩基を介したこの共有結合はロドプシンの機能発現にも重要な役割を果たしている。  


 ロドプシンが[[wikipedia:JA:可視光|可視光]](最大吸収波長500nm)を受容できるのは、このシッフ塩基の[[wikipedia:JA:窒素|窒素]]原子が[[wikipedia:JA:プロトン|プロトン]]化しているからである。レチナールやレチナールシッフ塩基は吸収極大波長が[[wikipedia:JA:紫外部|紫外部]]にあり、紫外光しか吸収することができない。一方、レチナールシッフ塩基がプロトン化すると、分子内の[[wikipedia:JA:二重結合|二重結合]]系が非局在化され、その結果、吸収極大波長が可視部に移動する。  
 ロドプシンが[[wikipedia:JA:可視光|可視光]](最大吸収波長500nm)を受容できるのは、このシッフ塩基の[[wikipedia:JA:窒素|窒素]]原子が[[wikipedia:JA:プロトン|プロトン]]化しているからである。レチナールやレチナールシッフ塩基は吸収極大波長が[[wikipedia:JA:紫外部|紫外部]]にあり、紫外光しか吸収することができない。一方、レチナールシッフ塩基がプロトン化すると、分子内の[[wikipedia:JA:二重結合|二重結合]]系が非局在化され、その結果、吸収極大波長が可視部に移動する。  


 レチナールはオプシンの内部に埋め込まれており、また、そのプロトン化シッフ塩基は疎水的な環境に位置している。そのためそのままでは非常に不安定である。オプシン内にはこの[[wikipedia:JA:正電荷|正電荷]]を安定化する対イオン(counterion)が存在する。ロドプシンではE113が対イオンとして働き<ref><pubmed> 2573063 </pubmed></ref>、H7のシッフ塩基プロトンの正電荷とH3の[[グルタミン酸]]の負電荷の間に塩橋(salt bridge)が形成される<ref><pubmed> 1356370 </pubmed></ref>。また対イオンはシッフ塩基の[[wikipedia:JA:pKa|pKa]]を上げシッフ塩基の加水分解を防いでいる。対イオンは単独で働いているのではなく、構造水を含む[[wikipedia:JA:水素結合|水素結合]]ネットワークを形成して働いていると考えられている。  
 レチナールはオプシンの内部に埋め込まれており、また、そのプロトン化シッフ塩基は疎水的な環境に位置している。そのためそのままでは非常に不安定である。オプシン内にはこの[[wikipedia:JA:正電荷|正電荷]]を安定化する対イオン(counterion)が存在する。ロドプシンではE113が対イオンとして働き<ref><pubmed> 2573063 </pubmed></ref>、H7のシッフ塩基プロトンの正電荷とH3の[[グルタミン酸]]の負電荷の間に塩橋(salt bridge)が形成される<ref><pubmed> 1356370 </pubmed></ref>。また対イオンはシッフ塩基の[[wikipedia:JA:pKa|pKa]]を上げシッフ塩基の[[wikipedia:JA:加水分解|加水分解]]を防いでいる。対イオンは単独で働いているのではなく、構造水を含む[[wikipedia:JA:水素結合|水素結合]]ネットワークを形成して働いていると考えられている。  


[[Image:Central Ionic Lock.png|thumb|right|300px|'''図3:シッフ塩基・対イオン・塩橋'''<br />ヘッリックス7の296番目のリシン残基の正電荷とヘリックス3の対イオンの負電荷は塩橋を形成し、リガンド非結合状態の受容体で不活性状態を安定化する。11-cis-retinalが結合した状態でもシッフ塩基プロトンと対イオンの間で塩橋が生じ不活性状態を安定化する。]] <br>  
[[Image:Central Ionic Lock.png|thumb|right|300px|'''図3:シッフ塩基・対イオン・塩橋'''<br />ヘッリックス7の296番目のリシン残基の正電荷とヘリックス3の対イオンの負電荷は塩橋を形成し、リガンド非結合状態の受容体で不活性状態を安定化する。11-cis-retinalが結合した状態でもシッフ塩基プロトンと対イオンの間で塩橋が生じ不活性状態を安定化する。]] <br>  


== '''構造モチーフ'''  ==
== 構造モチーフ ==
 ロドプシン類あるいはGタンパク質共役型受容体(GPCR)のファミリー間で良く保存されている構造モチーフが幾つか知られており、これらは受容体の機能発現に重要である<ref><pubmed> 19836958 </pubmed></ref>。  
 ロドプシン類あるいはGタンパク質共役型受容体(GPCR)のファミリー間で良く保存されている構造モチーフが幾つか知られており、これらは受容体の機能発現に重要である<ref><pubmed> 19836958 </pubmed></ref>。  


 (D/E)R(Y/W)モチーフはファミリーAのGPCR間でよく保存されている構造モチーフで、ロドプシンではH3の細胞質側末端のE134/R135/Y136に相当する。また、H7とH8の先端にある302番目から306番目の残基はNPXXYモチーフと呼ばれ、このモチーフもファミリー1のGPCRの間でよく保存されている。ロドプシンの暗状態ではR135とE134の間に塩橋がある。また、R135はH6に存在するE247とT251との間で静電的な相互作用をしている(これらの相互作用を通常Ionic Lockと呼ぶ)。ロドプシンが光を受容することによりタンパク質部分の構造変化がおこると、E134は溶液中のプロトンと結合して中性になる。その結果、E134とR135の塩橋がなくなり、R135はNPXXYモチーフ中のY306やその他の残基(M257やY223)と新たな相互作用ネットワークを形成し、ロドプシンの活性構造の形成に寄与していると考えられている(図2参照)。  
 (D/E)R(Y/W)モチーフはファミリーAのGPCR間でよく保存されている構造モチーフで、ロドプシンではH3の細胞質側末端のE134/R135/Y136に相当する。また、H7とH8の先端にある302番目から306番目の残基はNPXXYモチーフと呼ばれ、このモチーフもファミリー1のGPCRの間でよく保存されている。ロドプシンの暗状態ではR135とE134の間に塩橋がある。また、R135はH6に存在するE247とT251との間で静電的な相互作用をしている(これらの相互作用を通常Ionic Lockと呼ぶ)。ロドプシンが光を受容することによりタンパク質部分の構造変化がおこると、E134は溶液中のプロトンと結合して中性になる。その結果、E134とR135の塩橋がなくなり、R135はNPXXYモチーフ中のY306やその他の残基(M257やY223)と新たな相互作用ネットワークを形成し、ロドプシンの活性構造の形成に寄与していると考えられている(図2参照)。  


= '''ロドプシンの吸収スペクトル'''  =
= ロドプシンの吸収スペクトル =
 ロドプシンは可視部に吸収極大を示す光受容タンパク質である。すでに述べたように、ロドプシンの可視部の吸収スペクトルは分子内に含まれているレチナールに由来する。有機溶媒中に溶かしたレチナールの吸収スペクトルは380 nm付近に吸収極大を示すが、レチナールがオプシン中のリシン残基とプロトン化したシッフ塩基を形成すると、500 nm付近に吸収極大がシフトする。有機溶媒中のプロトン化シッフ塩基は約440 nmに吸収極大を示す。そこで、440 nmからタンパク質の作用によって変化する差分を「オプシンシフト(Opsin shift)」と呼ぶ(図4a参照)。 このように、ロドプシンの吸収極大はプロトン化したレチナールシッフ塩基の吸収極大がまわりのアミノ酸残基によって調節されたものである<ref>''K Nakanishi, V Baloghair, M Arnaboli, K Tsujimoto, and B Honig'''<br>An External Point-Charge Model for Bacteriorhodopsin to Account for Its Purple Color<br>''J Am Chem Soc'':1980</ref>。実際、多くの動物のロドプシンは500nm付近に吸収極大を示すが、深海など極端な光環境下で生息する生物はそれぞれの光環境に適した吸収極大を示す。  
 ロドプシンは可視部に吸収極大を示す光受容タンパク質である。すでに述べたように、ロドプシンの可視部の吸収スペクトルは分子内に含まれているレチナールに由来する。有機溶媒中に溶かしたレチナールの吸収スペクトルは380 nm付近に吸収極大を示すが、レチナールがオプシン中のリシン残基とプロトン化したシッフ塩基を形成すると、500 nm付近に吸収極大がシフトする。有機溶媒中のプロトン化シッフ塩基は約440 nmに吸収極大を示す。そこで、440 nmからタンパク質の作用によって変化する差分を「オプシンシフト(Opsin shift)」と呼ぶ(図4a参照)。 このように、ロドプシンの吸収極大はプロトン化したレチナールシッフ塩基の吸収極大がまわりのアミノ酸残基によって調節されたものである<ref>''K Nakanishi, V Baloghair, M Arnaboli, K Tsujimoto, and B Honig'''<br>An External Point-Charge Model for Bacteriorhodopsin to Account for Its Purple Color<br>''J Am Chem Soc'':1980</ref>。実際、多くの動物のロドプシンは500nm付近に吸収極大を示すが、深海など極端な光環境下で生息する生物はそれぞれの光環境に適した吸収極大を示す。  


64行目: 64行目:
[[Image:Rhodopsin spectrum and retinal.png|thumb|right|300px|'''図4:ロドプシンの吸収スペクトル'''<br />a:[[wikipedia:JA:有機溶媒|有機溶媒]]中のRetinalは380nmに吸収極大(λmax)を示すが、アミノ基を持つ化合物(例えば[[wikipedia:JA:プロピルアミン|プロピルアミン]])とシッフ塩基を形成してプロトン化されると、λmaxが440nmまでシフトする。さらにロドプシン中ではまわりのアミノ酸残基との相互作用によって、λmaxが約500 nmまでシフトする。この440nmからの差分をオプシンシフトと呼ぶ。つまり、オプシンシフトが大きいロドプシン類はより長波長側にλmaxを示す。ロドプシンの吸収スペクトルは可視部の吸収(αバンド)の他に、紫外領域に小さな吸収(βバンド)、280nm付近にタンパク質の[[wikipedia:JA:芳香族|芳香族]]アミノ酸残基に由来する吸収(γバンド)を示すのが特徴である。<br />b:桿体視物質、ロドプシンには2種類のレチナールが知られている。A2レチナールより構成するものを特にポルフィロプシンとよび、A1レチナールよりも共役二重結合系が長いのでより長波長の光を吸収することができる。一般的に多くの動物がA1レチナールを用いるが魚類、両生類や爬虫類等ではA2レチナールを用いるものが知られている。<br />c:無脊椎動物の視物質にはA1、A2レチナールの他にA3やA4レチナールを用いるものもある。発色団の種類に関わらずこれらの光受容タンパク質を総称してロドプシン類と呼ぶのが慣習である。]]  
[[Image:Rhodopsin spectrum and retinal.png|thumb|right|300px|'''図4:ロドプシンの吸収スペクトル'''<br />a:[[wikipedia:JA:有機溶媒|有機溶媒]]中のRetinalは380nmに吸収極大(λmax)を示すが、アミノ基を持つ化合物(例えば[[wikipedia:JA:プロピルアミン|プロピルアミン]])とシッフ塩基を形成してプロトン化されると、λmaxが440nmまでシフトする。さらにロドプシン中ではまわりのアミノ酸残基との相互作用によって、λmaxが約500 nmまでシフトする。この440nmからの差分をオプシンシフトと呼ぶ。つまり、オプシンシフトが大きいロドプシン類はより長波長側にλmaxを示す。ロドプシンの吸収スペクトルは可視部の吸収(αバンド)の他に、紫外領域に小さな吸収(βバンド)、280nm付近にタンパク質の[[wikipedia:JA:芳香族|芳香族]]アミノ酸残基に由来する吸収(γバンド)を示すのが特徴である。<br />b:桿体視物質、ロドプシンには2種類のレチナールが知られている。A2レチナールより構成するものを特にポルフィロプシンとよび、A1レチナールよりも共役二重結合系が長いのでより長波長の光を吸収することができる。一般的に多くの動物がA1レチナールを用いるが魚類、両生類や爬虫類等ではA2レチナールを用いるものが知られている。<br />c:無脊椎動物の視物質にはA1、A2レチナールの他にA3やA4レチナールを用いるものもある。発色団の種類に関わらずこれらの光受容タンパク質を総称してロドプシン類と呼ぶのが慣習である。]]  


= '''ロドプシンの光反応過程'''  =
= ロドプシンの光反応過程 =
 光を受容したロドプシンが活性状態に変化する過程を通常「ロドプシンの光反応過程」と呼ぶ。しかし、厳密には光が関与するのは発色団であるレチナールの光吸収と[[wikipedia:JA:光異性化|光異性化]]反応だけであり、活性状態に変化するタンパク質の構造変化は熱反応である<ref><pubmed> 11743865 </pubmed></ref>。ロドプシンの研究でノーベル賞を受賞したGeorge Wald博士は、この反応過程を写真を撮る過程になぞらえている。ロドプシンはカメラのフィルムのように光によって何らかの変化が生じるが、この変化は「現像」する過程によって初めて目に見えるものになるのである。ロドプシンでも同じように、光によって生じた変化が熱反応を経て活性状態の生成へとつながる<ref><pubmed> 4877437 </pubmed></ref>。
 光を受容したロドプシンが活性状態に変化する過程を通常「ロドプシンの光反応過程」と呼ぶ。しかし、厳密には光が関与するのは発色団であるレチナールの光吸収と[[wikipedia:JA:光異性化|光異性化]]反応だけであり、活性状態に変化するタンパク質の構造変化は熱反応である<ref><pubmed> 11743865 </pubmed></ref>。ロドプシンの研究でノーベル賞を受賞したGeorge Wald博士は、この反応過程を写真を撮る過程になぞらえている。ロドプシンはカメラのフィルムのように光によって何らかの変化が生じるが、この変化は「現像」する過程によって初めて目に見えるものになるのである。ロドプシンでも同じように、光によって生じた変化が熱反応を経て活性状態の生成へとつながる<ref><pubmed> 4877437 </pubmed></ref>。


== '''光反応''' ==
== 光反応  ==
 ロドプシンの最初のステップはレチナールの光吸収と光異性化反応である。暗状態で結合している11-cis-retinalは光を受容するとall-trans-retinalに異性化する。レチナールの光異性化反応は溶液中でも起こるが、ロドプシン中での異性化反応は非常に高効率、高速で起こることが特徴である。溶液中のレチナールは20%程度の異性化効率(量子収率)しか示さないが、ロドプシン中のレチナールは65%の異性化効率を示す。そして200フェムト秒(200×10<sup>−15</sup>秒)<ref><pubmed> 1925597 </pubmed></ref>で起こるレチナールの光異性化反応は現在知られている最も速い[[wikipedia:JA:化学反応|化学反応]]の一つである。ロドプシン中でのレチナールの構造やその光反応性は近傍のアミノ酸残基によって調節されている。
 ロドプシンの最初のステップはレチナールの光吸収と光異性化反応である。暗状態で結合している11-cis-retinalは光を受容するとall-trans-retinalに異性化する。レチナールの光異性化反応は溶液中でも起こるが、ロドプシン中での異性化反応は非常に高効率、高速で起こることが特徴である。溶液中のレチナールは20%程度の異性化効率(量子収率)しか示さないが、ロドプシン中のレチナールは65%の異性化効率を示す。そして200フェムト秒(200×10<sup>−15</sup>秒)<ref><pubmed> 1925597 </pubmed></ref>で起こるレチナールの光異性化反応は現在知られている最も速い[[wikipedia:JA:化学反応|化学反応]]の一つである。ロドプシン中でのレチナールの構造やその光反応性は近傍のアミノ酸残基によって調節されている。


== '''熱反応'''  ==
== 熱反応 ==
 ロドプシン中でのレチナールの異性化反応は超高速で起こる。そのため、まわりのタンパク質部分はレチナールの異性化による構造変化についていけず、異性化直後のレチナールは非常にねじれた構造をとる。その結果、レチナールの吸収スペクトルは大幅に長波長シフトする。また、光子のエネルギーの約70%はレチナールの[[wikipedia:JA:構造ポテンシャルエネルギー|構造ポテンシャルエネルギー]]として蓄えられ、このエネルギーを使ってレチナール近傍のアミノ酸残基との相互作用が変化し、最終的にタンパク質全体の構造変化が誘起され、活性状態が生成する。  
 ロドプシン中でのレチナールの異性化反応は超高速で起こる。そのため、まわりのタンパク質部分はレチナールの異性化による構造変化についていけず、異性化直後のレチナールは非常にねじれた構造をとる。その結果、レチナールの吸収スペクトルは大幅に長波長シフトする。また、光子のエネルギーの約70%はレチナールの[[wikipedia:JA:構造ポテンシャルエネルギー|構造ポテンシャルエネルギー]]として蓄えられ、このエネルギーを使ってレチナール近傍のアミノ酸残基との相互作用が変化し、最終的にタンパク質全体の構造変化が誘起され、活性状態が生成する。  


77行目: 77行目:
 Meta IIはその前駆体Meta Iとの間でpH平衡にある(MetaI/IIの平衡はpH以外にも温度や膜の組成等で変化することが知られている)。 興味深いことに、平衡中の両者の量比は、シッフ塩基が脱プロトン化しているMeta IIが低pH(外液のプロトンが多い条件)で多くなり、プロトン化シッフ塩基を持つ Meta Iが高pHで多くなる。つまり、Meta II(活性状態)の生成には、シッフ塩基の脱プロトン化に伴う外界からのプロトンの取り込みが必要なことを示している。最近の研究によると、シッフ塩基の脱プロトン化がヘリックスの再配置(剛体運動)を誘起し、その結果、ERYモチーフが主となって形成するIonic lockが解除(E134がプロトン化)されることが知られている。ロドプシンの活性状態はこのような逐次的な構造変化によって生成するのである。  
 Meta IIはその前駆体Meta Iとの間でpH平衡にある(MetaI/IIの平衡はpH以外にも温度や膜の組成等で変化することが知られている)。 興味深いことに、平衡中の両者の量比は、シッフ塩基が脱プロトン化しているMeta IIが低pH(外液のプロトンが多い条件)で多くなり、プロトン化シッフ塩基を持つ Meta Iが高pHで多くなる。つまり、Meta II(活性状態)の生成には、シッフ塩基の脱プロトン化に伴う外界からのプロトンの取り込みが必要なことを示している。最近の研究によると、シッフ塩基の脱プロトン化がヘリックスの再配置(剛体運動)を誘起し、その結果、ERYモチーフが主となって形成するIonic lockが解除(E134がプロトン化)されることが知られている。ロドプシンの活性状態はこのような逐次的な構造変化によって生成するのである。  


= '''光シグナル伝達''' =
= 光シグナル伝達  =


== '''Gタンパク質のシグナル'''  ==
== Gタンパク質のシグナル ==


 光を受容したロドプシンは数ミリ秒の間にGタンパク質を活性化する状態に変化する。ロドプシンと共役するGタンパク質はαβγのサブユットからなる3量体Gタンパク質である。Gタンパク質(guanine nucleotide-binding proteins: G-proteins)はGTPを結合すると「on」、GDPを結合すると「off」になる分子スイッチとして機能する。一般にoff状態では3量体として存在し、Gα中でGDP-GTP交換反応が起こると、GαはGβγと解離して活性状態になる。活性化したロドプシンは1秒間に数百のGタンパク質を活性化することができるため、大きなシグナル増幅作用がある。  
 光を受容したロドプシンは数ミリ秒の間にGタンパク質を活性化する状態に変化する。ロドプシンと共役するGタンパク質はαβγのサブユットからなる3量体Gタンパク質である。Gタンパク質(guanine nucleotide-binding proteins: G-proteins)はGTPを結合すると「on」、GDPを結合すると「off」になる分子スイッチとして機能する。一般にoff状態では3量体として存在し、Gα中でGDP-GTP交換反応が起こると、GαはGβγと解離して活性状態になる。活性化したロドプシンは1秒間に数百のGタンパク質を活性化することができるため、大きなシグナル増幅作用がある。  
85行目: 85行目:
 活性化したGαはcGMPを5’-GMPに加水分解する酵素である[[ホスホジエステラーゼ]](Phosphodiesterase、PDE)に作用する。PDEは酵素活性部位であるαβサブユニットとこれらと特異的に結合しその活性を抑制する2つのγサブユニットからなる。GαはこのPDEγに結合することによってγサブユニットの抑制効果を解除し、PDEを活性化する。  
 活性化したGαはcGMPを5’-GMPに加水分解する酵素である[[ホスホジエステラーゼ]](Phosphodiesterase、PDE)に作用する。PDEは酵素活性部位であるαβサブユニットとこれらと特異的に結合しその活性を抑制する2つのγサブユニットからなる。GαはこのPDEγに結合することによってγサブユニットの抑制効果を解除し、PDEを活性化する。  


 PDEが活性化すると細胞内のcGMPの濃度が急減し、cGMP依存性陽イオンチャネル(cyclic nucleotide-gated ion channels: CNG channels) が閉じる。光を受容したロドプシンからのシグナルがこない状態では、CNGチャネルは開いた状態であり、細胞内にNa+やCa2+が流入している。シグナルがくると上記の反応が起こるため、CNGチャネルが閉じ、細胞が過分極する。
 PDEが活性化すると細胞内のcGMPの濃度が急減し、cGMP依存性陽イオンチャネル(cyclic nucleotide-gated ion channels: CNG channels) が閉じる。光を受容したロドプシンからのシグナルがこない状態では、CNGチャネルは開いた状態であり、細胞内にNa<sup>+</sup>やCa2<sup>+</sup>が流入している。シグナルがくると上記の反応が起こるため、CNGチャネルが閉じ、細胞が過分極する。


 視細胞は暗状態では少し[[脱分極]]しており、その[[シナプス]]末端から[[神経伝達物質]]であるグルタミン酸が放出されている。光を受容して上記のシグナル伝達系が働くと過分極し、グルタミン酸の放出量が減少する。この変化が[[双極細胞]]などの下流の神経細胞に伝えられ、出力ニューロンである[[神経節細胞]]を経て[[脳]]にその情報が伝えられる。 (シグナル伝達についての参考文献<ref><pubmed> 19837030 </pubmed></ref><ref name=ref_shichida><pubmed> 19720651 </pubmed></ref>)
 視細胞は暗状態では少し[[脱分極]]しており、その[[シナプス]]末端から[[神経伝達物質]]であるグルタミン酸が放出されている。光を受容して上記のシグナル伝達系が働くと過分極し、グルタミン酸の放出量が減少する。この変化が[[双極細胞]]などの下流の神経細胞に伝えられ、出力ニューロンである[[神経節細胞]]を経て[[脳]]にその情報が伝えられる。 (シグナル伝達についての参考文献<ref><pubmed> 19837030 </pubmed></ref><ref name=ref_shichida><pubmed> 19720651 </pubmed></ref>)


== '''シグナルのシャットダウンと視細胞の回復'''  ==
== シグナルのシャットダウンと視細胞の回復 ==
 光を受容して応答した視細胞は、次の光を受容するために速やかにもとの静止状態に戻る必要がある。素早く戻ることが光受容の時間分解能に関わるので、能動的に応答をシャットダウンし、もとの状態に戻ることが重要となる。
 光を受容して応答した視細胞は、次の光を受容するために速やかにもとの静止状態に戻る必要がある。素早く戻ることが光受容の[[wikipedia:JA:時間分解能|時間分解能]]に関わるので、能動的に応答をシャットダウンし、もとの状態に戻ることが重要となる。


 視細胞における光情報伝達はロドプシンの光受容によって始まり、また、ロドプシンからGタンパク質へのシグナル伝達の際に大きく増幅される。したがって、ロドプシンの活性状態を素早くシャットダウンすることは非常に重要である。ロドプシンの活性状態はメタロドプシンⅡ(Metarhodopsin II)と名付けられており、その名のとおり準安定(metastable)である。しかし、数十秒間は安定に存在する。視細胞の単一光子応答は1秒以内で終結するので、メタロドプシンⅡはこの時間よりも速くシャットダウン(不活性化)されている。メタロドプシンⅡの不活性化にはSer/Thrキナーゼである[[ロドプシンキナーゼ]](Rhodopsin Kinase: RK)が関与する。メタロドプシンⅡはこの酵素によって[[リン酸化]]され、そのGタンパク質活性化能が減少する。メタロドプシンⅡのC末端領域にはリン酸化される部位として複数のS/Tが同定されている。生体内では主にS334, S338, S343がリン酸化される。さらにリン酸化されたメタロドプシンⅡにアレスチン(Arrestin)が結合することによってGタンパク質との結合が完全に阻害される。  
 視細胞における光情報伝達はロドプシンの光受容によって始まり、また、ロドプシンからGタンパク質へのシグナル伝達の際に大きく増幅される。したがって、ロドプシンの活性状態を素早くシャットダウンすることは非常に重要である。ロドプシンの活性状態はメタロドプシンⅡ(Metarhodopsin II)と名付けられており、その名のとおり準安定(metastable)である。しかし、数十秒間は安定に存在する。視細胞の単一光子応答は1秒以内で終結するので、メタロドプシンⅡはこの時間よりも速くシャットダウン(不活性化)されている。メタロドプシンⅡの不活性化にはSer/Thrキナーゼである[[ロドプシンキナーゼ]](Rhodopsin Kinase: RK)が関与する。メタロドプシンⅡはこの酵素によって[[リン酸化]]され、そのGタンパク質活性化能が減少する。メタロドプシンⅡのC末端領域にはリン酸化される部位として複数のS/Tが同定されている。生体内では主にS334, S338, S343がリン酸化される。さらにリン酸化されたメタロドプシンⅡにアレスチン(Arrestin)が結合することによってGタンパク質との結合が完全に阻害される。  
100行目: 100行目:
 細胞が完全にもとの状態に戻るには、PDEの作用によって急減した細胞内cGMP濃度ももとに戻す必要がある。cGMPはGC([[Guanyl Cyclase]])によって定常的に合成されているが、GCの活性はGCAP ([[Guanyl Cyclase Activating Protein]])によって調節されている。光応答により細胞膜のCNGチャネルが閉じ細胞内のCa2+濃度が下がるとGCAPはGCの活性を促進するようになる。細胞内カルシウムの増減によるこの制御機構をカルシウムフィードバック機構と呼ぶ。この機構により細胞内のcGMP濃度が速やかに上昇すると[[CNGチャネル]]も開き、視細胞が元の状態に戻る。なお、細胞内カルシウム濃度の減少により、ロドプシンキナーゼを制御する因子([[Sモジュリン]]あるいはリカバリンと呼ばれている)も知られており<ref><pubmed> 8386803 </pubmed></ref>、GCAPとあわせて視細胞の[[明順応]]を説明する一つの機構と考えられている。  
 細胞が完全にもとの状態に戻るには、PDEの作用によって急減した細胞内cGMP濃度ももとに戻す必要がある。cGMPはGC([[Guanyl Cyclase]])によって定常的に合成されているが、GCの活性はGCAP ([[Guanyl Cyclase Activating Protein]])によって調節されている。光応答により細胞膜のCNGチャネルが閉じ細胞内のCa2+濃度が下がるとGCAPはGCの活性を促進するようになる。細胞内カルシウムの増減によるこの制御機構をカルシウムフィードバック機構と呼ぶ。この機構により細胞内のcGMP濃度が速やかに上昇すると[[CNGチャネル]]も開き、視細胞が元の状態に戻る。なお、細胞内カルシウム濃度の減少により、ロドプシンキナーゼを制御する因子([[Sモジュリン]]あるいはリカバリンと呼ばれている)も知られており<ref><pubmed> 8386803 </pubmed></ref>、GCAPとあわせて視細胞の[[明順応]]を説明する一つの機構と考えられている。  


= '''ロドプシン類'''  =
= ロドプシン類 =
 本来「ロドプシン」とは桿体視物質をあらわす言葉であった。しかし、生化学・分子生物学の進展により、桿体視細胞以外の光受容細胞や脊椎動物以外の生物種から相同性のある光受容タンパク質が続々と報告されるようになり<ref><pubmed> 15774036 </pubmed></ref><ref name=ref_shichida />、これらの光受容タンパク質も「ロドプシン」あるいは「オプシン」と呼ばれるようになった。これら多くの発見の中でも、ニワトリの[[松果体]]に存在する[[ピノプシン]]の発見は特筆される<ref><pubmed> 7969427 </pubmed></ref>。つまり、それまでに発見されていたロドプシン類はいわゆる「視覚」に関与する受容体であったが、ピノプシンは視覚以外の機能に関与する受容体であったからである。この発見以降、「視覚オプシン(visual opsin)」、「非視覚オプシン(non-visual opsin)」という言葉が使われるようになった。最近では1000種類以上のロドプシン遺伝子が報告されており、これらはGタンパク質共役型受容体(G Protein Coupled Receptor: GPCR)の一員であることが知られている。  
 本来「ロドプシン」とは桿体視物質をあらわす言葉であった。しかし、生化学・分子生物学の進展により、桿体視細胞以外の光受容細胞や脊椎動物以外の生物種から相同性のある光受容タンパク質が続々と報告されるようになり<ref><pubmed> 15774036 </pubmed></ref><ref name=ref_shichida />、これらの光受容タンパク質も「ロドプシン」あるいは「オプシン」と呼ばれるようになった。これら多くの発見の中でも、ニワトリの[[松果体]]に存在する[[ピノプシン]]の発見は特筆される<ref><pubmed> 7969427 </pubmed></ref>。つまり、それまでに発見されていたロドプシン類はいわゆる「視覚」に関与する受容体であったが、ピノプシンは視覚以外の機能に関与する受容体であったからである。この発見以降、「視覚オプシン(visual opsin)」、「非視覚オプシン(non-visual opsin)」という言葉が使われるようになった。最近では1000種類以上のロドプシン遺伝子が報告されており、これらはGタンパク質共役型受容体(G Protein Coupled Receptor: GPCR)の一員であることが知られている。  


 GPCRは[[ペプチド]]、[[ホルモン]]、[[匂い]][[リンクの名前]]物質などのさまざまな化学物質を受容し、Gタンパク質を介する細胞内シグナル伝達機構を駆動する受容体である。GPCRによる外界からのシグナル受容はほとんどの細胞で観測され、細胞間のコミュニケーションを担う上でも非常に重要な受容体である。また、マウスやヒトではゲノム中で最も大きなタンパク質ファミリーであることが知られている。ロドプシン類はGPCRのメンバーであるが、分子内に内在性のリガンド(11-シス型のレチナール)を含んでいることが特徴である。  
 GPCRは[[ペプチド]]、[[ホルモン]]、[[匂い]][[リンクの名前]]物質などのさまざまな[[wikipedia:JA:化学物質|化学物質]]を受容し、Gタンパク質を介する細胞内シグナル伝達機構を駆動する受容体である。GPCRによる外界からのシグナル受容はほとんどの細胞で観測され、細胞間のコミュニケーションを担う上でも非常に重要な受容体である。また、マウスやヒトではゲノム中で最も大きなタンパク質ファミリーであることが知られている。ロドプシン類はGPCRのメンバーであるが、分子内に内在性のリガンド(11-シス型のレチナール)を含んでいることが特徴である。  


== '''GPCRとロドプシン'''  ==
== GPCRとロドプシン ==
 ロドプシンはGPCRファミリー1の代表的な受容体として知られている。 実際ファミリー1のGPCRはrhodopsin-like GPCRとも呼ばれている。近年の結晶構造解析の結果、ロドプシンの立体構造、特に膜貫通領域の構造は、他のGPCRのそれらと酷似していることが証明された。しかし、非常に多様化しているGPCRのなかでロドプシンは必ずしも典型的なGPCRというわけではない。ロドプシンは11-シスレチナールを内在性のリガンドとしてもともと結合している。11-シスレチナールは、発色団として、また、インバースアゴニストとして働き、これはロドプシンのみの特徴である。  
 ロドプシンはGPCRファミリー1の代表的な受容体として知られている。 実際ファミリー1のGPCRはrhodopsin-like GPCRとも呼ばれている。近年の[[wikipedia:JA:結晶構造解析|結晶構造解析]]の結果、ロドプシンの立体構造、特に膜貫通領域の構造は、他のGPCRのそれらと酷似していることが証明された。しかし、非常に多様化しているGPCRのなかでロドプシンは必ずしも典型的なGPCRというわけではない。ロドプシンは11-シスレチナールを内在性のリガンドとしてもともと結合している。11-シスレチナールは、発色団として、また、インバースアゴニストとして働き、これはロドプシンのみの特徴である。  


 ウシロドプシンの一次配列は1982年に決定され<ref><pubmed> 6759163 </pubmed></ref>、その翌年にはクローニングされている<ref><pubmed> 6194890 </pubmed></ref>。そして2000年にはX線結晶解析により3次元立体構造モデルが提出された<ref><pubmed> 10926528 </pubmed></ref><ref><pubmed> 11972040 </pubmed></ref>。また、現在ではさまざまな中間状態や活性状態<ref><pubmed> 21389988 </pubmed></ref>、変異体などの立体構造も発表されている。一次構造の決定、クローニング、結晶構造決定などについては、種々のGPCRの中ではロドプシンで最初に行われた。ウシロドプシンのように大量の試料を比較的簡単に調製できるGPCRは珍しく、また内在性のリガンドを持つロドプシンは他のGPCRに較べて非常に安定でそのためロドプシンの研究は他の受容体よりも先に進んだ。こうしてロドプシンはGPCR研究のトップランナーとして研究されてきた経歴があり、GPCRファミリー1の代表的な受容体とされている。  
 ウシロドプシンの一次配列は1982年に決定され<ref><pubmed> 6759163 </pubmed></ref>、その翌年にはクローニングされている<ref><pubmed> 6194890 </pubmed></ref>。そして2000年にはX線結晶解析により3次元立体構造モデルが提出された<ref><pubmed> 10926528 </pubmed></ref><ref><pubmed> 11972040 </pubmed></ref>。また、現在ではさまざまな中間状態や活性状態<ref><pubmed> 21389988 </pubmed></ref>、変異体などの立体構造も発表されている。一次構造の決定、クローニング、結晶構造決定などについては、種々のGPCRの中ではロドプシンで最初に行われた。ウシロドプシンのように大量の試料を比較的簡単に調製できるGPCRは珍しく、また内在性のリガンドを持つロドプシンは他のGPCRに較べて非常に安定でそのためロドプシンの研究は他の受容体よりも先に進んだ。こうしてロドプシンはGPCR研究のトップランナーとして研究されてきた経歴があり、GPCRファミリー1の代表的な受容体とされている。  
112行目: 112行目:
 ロドプシンがGPCRであると認知されるようになったのは数十年前からである。1986年にGPCRの一つ[[βアドレナリン受容体]]の一次配列が決定されるとすでに解析されていたロドプシンの配列そしてその配列から予想される7回膜貫通構造が非常に似ていることが発見された。その後も次々に様々なGPCRの配列が決定され、これらは一大タンパク質ファミリーを形成することが明らかになった。  
 ロドプシンがGPCRであると認知されるようになったのは数十年前からである。1986年にGPCRの一つ[[βアドレナリン受容体]]の一次配列が決定されるとすでに解析されていたロドプシンの配列そしてその配列から予想される7回膜貫通構造が非常に似ていることが発見された。その後も次々に様々なGPCRの配列が決定され、これらは一大タンパク質ファミリーを形成することが明らかになった。  


== '''動物のロドプシンと菌のロドプシン'''  ==
== 動物のロドプシンと菌のロドプシン ==
 様々な動物で見つかっているロドプシン(オプシン)の他にバクテリアにも光感受性を持つレチナールタンパク質が含まれていることが知られている。1971年にOesterheltとStoeckniusは好塩菌の一種ハロバクテリウム・ハロビウム(最近ではハロバクテリウム・サリナラムという)にレチナールを発色団とする光受容タンパク質が存在することを発見し、このタンパク質をバクテリオロドプシン(bR)と命名した<ref><pubmed> 4940442 </pubmed></ref>。その後の研究により、bRは光駆動のプロトンポンプ活性を示すことがわかり、また、バクテリアにはbRを含めて4種類のレチナールタンパク質が存在することがわかった。bR以外にはハロロドプシン(hR)、センソリーロドプシン(sR)、センソリーロドプシンII(sRII、フォボロドプシン(pR)ともいう)である。hRは光駆動のクロライドポンプ、sRとsRIIはそれぞれ正・負の光走性に関与するロドプシンである。最近、緑藻類から光駆動のチャネル活性を示すロドプシン(チャネルロドプシン)が発見され、hRとともに、神経細胞のlight-manipulationに応用されている。さらに最近では、海洋のバクテリアにもbR様のロドプシンが含まれていることが発見され、地球上のエネルギー生産の半分程度がbR様のロドプシン類で担われていることが注目されている。また、遺伝子発現を調節するロドプシン類もアナベナから発見されるなど、バクテリアが持つロドプシン類の機能解析は最近の一つのトピックスになっている。
 様々な動物で見つかっているロドプシン(オプシン)の他に[[wikipedia:JA:バクテリア]]にも光感受性を持つレチナールタンパク質が含まれていることが知られている。1971年にOesterheltとStoeckniusは[[wikipedia:JA:好塩菌|好塩菌]]の一種[[wikipedia:JA:ハロバクテリウム・ハロビウム|ハロバクテリウム・ハロビウム]](最近ではハロバクテリウム・サリナラムという)にレチナールを発色団とする光受容タンパク質が存在することを発見し、このタンパク質をバクテリオロドプシン(bR)と命名した<ref><pubmed> 4940442 </pubmed></ref>。その後の研究により、bRは光駆動の[[wikipedia:JA:プロトンポンプ|プロトンポンプ]]活性を示すことがわかり、また、バクテリアにはbRを含めて4種類のレチナールタンパク質が存在することがわかった。bR以外にはハロロドプシン(hR)、センソリーロドプシン(sR)、センソリーロドプシンII(sRII、フォボロドプシン(pR)ともいう)である。hRは光駆動のクロライドポンプ、sRとsRIIはそれぞれ正・負の光走性に関与するロドプシンである。最近、[[wikipedia:JA:緑藻類|緑藻類]]から光駆動の[[wikipedia:JA:チャネル|チャネル]]活性を示すロドプシン(チャネルロドプシン)が発見され、hRとともに、神経細胞のlight-manipulationに応用されている。さらに最近では、海洋のバクテリアにもbR様のロドプシンが含まれていることが発見され、地球上のエネルギー生産の半分程度がbR様のロドプシン類で担われていることが注目されている。また、遺伝子発現を調節するロドプシン類も[[wikipedia:JA:アナベナ|アナベナ]]から発見されるなど、バクテリアが持つロドプシン類の機能解析は最近の一つのトピックスになっている。


 これらのバクテリアのロドプシン類も、動物のロドプシン類と同様に7回膜貫通領域をもち、発色団としてレチナールを用い、さらにその発色団はレチナールシッフ塩基結合を介してH7に結合している。ただし、動物のロドプシンは主に11-シス型のレチナールを発色団として持ち、光を受容して全トランスに異性化されて活性状態になるが、バクテリアのロドプシンは全トランス型のレチナールを発色団とし、光を吸収して13-シス型に異性化し、機能を発揮することがわかっている。また、バクテリアのロドプシンは活性状態になったあと熱反応で元の状態に戻る光反応サイクルを描く。7本膜貫通α-ヘリックス構造を持つことから、両タンパク質は進化的に系統関係があると考えられていたが、アミノ酸配列からは相同性の無いことが明らかにされている。しかしロドプシン類の中でも20%程度の相同性しか示さないものもあるので、たとえ共通の祖先タンパク質から進化しても遠縁な生物種間では変異が蓄積し有意な相同性がなくなっている可能性もある。
 これらのバクテリアのロドプシン類も、動物のロドプシン類と同様に7回膜貫通領域をもち、発色団としてレチナールを用い、さらにその発色団はレチナールシッフ塩基結合を介してH7に結合している。ただし、動物のロドプシンは主に11-シス型のレチナールを発色団として持ち、光を受容して全トランスに異性化されて活性状態になるが、バクテリアのロドプシンは全トランス型のレチナールを発色団とし、光を吸収して13-シス型に異性化し、機能を発揮することがわかっている。また、バクテリアのロドプシンは活性状態になったあと熱反応で元の状態に戻る光反応サイクルを描く。7本膜貫通α-ヘリックス構造を持つことから、両タンパク質は進化的に系統関係があると考えられていたが、アミノ酸配列からは相同性の無いことが明らかにされている。しかしロドプシン類の中でも20%程度の相同性しか示さないものもあるので、たとえ共通の祖先タンパク質から進化しても遠縁な生物種間では変異が蓄積し有意な相同性がなくなっている可能性もある。

案内メニュー