「内側膝状体」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
18行目: 18行目:
=== 領域の区分  ===
=== 領域の区分  ===


 腹側核(MGv)、背側核(MGd)、内側核(MGm)の3つの領域は[[カルビンジン]](calbindin)や[[カルレチニン]](calretinin)などの[[カルシウム結合タンパク質]]や非リン酸化型[[ニューロフィラメント]](nonphosphorylated neurofilament; NNF)の発現の有無によって生化学的に区分けすることが可能である。MGvはカルビンジンとカルレチニンの発現が無く、MGdとMGmは非常に強い発現を示す(図1)<ref name=ref19643174 ><pubmed> 19643174 </pubmed></ref>。一方NNFの発現は、MGvとMGmで強く、MGdでは殆どない<ref>Chemoarchitectonic Atlas of the Rat Brain, Second Edition, 2008, ISBN-13:978-0123742377</ref>。また、[[パルブアルブミン]](parvalbumin)の発現はMGvで強い<ref name=ref16344161 ><pubmed> 16344161 </pubmed></ref>。[[Image:Hiroakitsukano Fig1.jpg|thumb|400px|<b>図1 マウスMGの生化学的区分けの例</b><br>(A)前額断切片カルレチニン染色像、(B)カルビンジン染色像、(C)マージ像。出版元より許可を得て引用<ref name=ref19643174 /> 。]]
 腹側核(MGv)、背側核(MGd)、内側核(MGm)の3つの領域は[[カルビンジン]](calbindin)や[[カルレチニン]](calretinin)などの[[カルシウム結合タンパク質]]や非リン酸化型[[ニューロフィラメント]](nonphosphorylated neurofilament; NNF)の発現の有無によって生化学的に区分けすることが可能である。MGvはカルビンジンとカルレチニンの発現が無く、MGdとMGmは非常に強い発現を示す(図1)<ref name=ref19643174 ><pubmed> 19643174 </pubmed></ref>。一方NNFの発現は、MGvとMGmで強く、MGdでは殆どない<ref>Chemoarchitectonic Atlas of the Rat Brain, Second Edition, 2008, ISBN-13:978-0123742377</ref>。また、[[パルブアルブミン]](parvalbumin)の発現はMGvで強い<ref name=ref16344161 ><pubmed> 16344161 </pubmed></ref>。[[Image:Hiroakitsukano Fig1.jpg|thumb|400px|<b>図1 マウスMGの生化学的区分けの例</b><br>(A)前額断切片カルレチニン染色像、(B)カルビンジン染色像、(C)マージ像。出版元より許可を得て引用<ref name=ref19643174 /> 。]][[Image:Fig2_2.jpg|thumb|300px|<b>図2 MGを構成するニューロン</b><br>LP, lateral posteriro nucleus; MGd, dorsal division of MGB; MGm, medial division of MGB; MZ, marginal zone; Ov, pars ovoidea; PL, posterior limitans nucleus; SG,suprageniculate nucleus; V, pars lateralis。pars lateralisのニューロンの形態がLaminae構造を作っている。出版元より許可を得て引用<ref name=ref10320097 />し改変。]]


=== 腹側核(MGv)  ===
=== 腹側核(MGv)  ===
====構造====
====構造====
 MGvは3つの亜核の中で、聴覚情報処理の中心的な役割を担っている領域である。MGvを構成する主なニューロンは[[Tufted neuron]](房飾細胞)であり、30%弱が[[Stellate cell]](星状細胞)である(図2)。MGvは周囲をthe marginal zone (MZ)に囲まれており、さらに[[Pars lateralis]](外側部)、[[Pars ovoidea]](卵形部)の2つに区別される(図2)。pars lateralisはMGvの代表的部位で、音の高さに沿った[[トノトピー]]が層状に構成されている(Laminae構造(ラミナ)構造)。Laminae構造は[[wikipedia:ja:ラット|ラット]]では弱いが[[wikipedia:ja:ネコ|ネコ]]では非常にはっきりとした構造となる<ref name=ref10320097 ><pubmed> 10320097 </pubmed></ref>。Tufted neuronの[[樹状突起]]も層構造に沿って配置されている。Pars ovoideaではtufted neuronの樹状突起と[[軸索]]は渦で巻いた様な形態をとっている(図2)。<br> 近年、マウスのMGvは単一構造でなく、いくつかのコンパートメントから成ることが判った<ref><pubmed>23692741</pubmed></ref><ref><pubmed>24638871</pubmed></ref>。それぞれのコンパートメントが、大脳皮質聴覚野の異なる領域に投射する(詳しくは、出入力の項)。<br>
 MGvは3つの亜核の中で、聴覚情報処理の中心的な役割を担っている領域である。MGvを構成する主なニューロンは[[Tufted neuron]](房飾細胞)であり、30%弱が[[Stellate cell]](星状細胞)である(図2)。MGvは周囲をthe marginal zone (MZ)に囲まれており、さらに[[Pars lateralis]](外側部)、[[Pars ovoidea]](卵形部)の2つに区別される(図2)。pars lateralisはMGvの代表的部位で、音の高さに沿った[[トノトピー]]が層状に構成されている(Laminae構造(ラミナ)構造)。Laminae構造は[[wikipedia:ja:ラット|ラット]]では弱いが[[wikipedia:ja:ネコ|ネコ]]では非常にはっきりとした構造となる<ref name=ref10320097 ><pubmed> 10320097 </pubmed></ref>。Tufted neuronの[[樹状突起]]も層構造に沿って配置されている。Pars ovoideaではtufted neuronの樹状突起と[[軸索]]は渦で巻いた様な形態をとっている(図2)。<br> 近年、マウスのMGvは単一構造でなく、いくつかのコンパートメントから成ることが判った<ref><pubmed>23692741</pubmed></ref><ref><pubmed>24638871</pubmed></ref>。それぞれのコンパートメントが、大脳皮質聴覚野の異なる領域に投射する(詳しくは、出入力の項)。
[[Image:Fig2_2.jpg|thumb|300px|<b>図2 MGを構成するニューロン</b><br>LP, lateral posteriro nucleus; MGd, dorsal division of MGB; MGm, medial division of MGB; MZ, marginal zone; Ov, pars ovoidea; PL, posterior limitans nucleus; SG,suprageniculate nucleus; V, pars lateralis。pars lateralisのニューロンの形態がLaminae構造を作っている。出版元より許可を得て引用<ref name=ref10320097 />し改変。]]
 


====入出力====
====入出力====
 MGvが主に受ける軸索は同側下丘の[[中心核]](central nucleus of the inferior colliculus, ICC)のニューロンからであり、興奮性入力は[[グルタミン酸]]作動性で[[NMDA型グルタミン酸受容体|NMDA]]/[[AMPA型グルタミン酸受容体]]に作用する。樹状突起には[[代謝型グルタミン酸受容体]]も存在する<ref><pubmed> 10444669 </pubmed></ref>。MGvへの抑制性入力は[[GABA]]作動性であり、[[GABAA受容体|GABA<sub>A</sub>]]/[[GABAB受容体|GABA<sub>B</sub>受容体]]に作用する<ref><pubmed>10322042 </pubmed></ref>。MGvから大脳皮質へは、Core領域([[前聴覚野]](anterior auditory field, AAF)、[[一次聴覚野]](primary auditory cortex, AI)、ネコや[[wikipedia:ja:イヌ|イヌ]]などの[[後聴覚野]](Posterior auditory field, P)のIII/IV層にトノトピー構造をもって軸索を伸ばす。一部の側枝はV層にも入力する。聴覚野からの下降性の直接入力は興奮性しかないが、[[視床網様核]](reticular thalamic nucleus, TRN)を経由してMGを抑制する系が存在する(図3)。<br> ネコにおいてもMGvから聴覚野AAFとAIに投射するニューロンは大部分が異なり、並列回路であることは示唆されている<ref><pubmed>15464293 </pubmed></ref>。マウスMGvにおいては並列回路を実現するさらに強固な構造があり、AAFに投射する部位は内側部、AIに投射する部位は外側部、島皮質聴覚領域(Insurar auditory field, IAF)に投射する部位は、腹内側部に存在し、MGvの中で部位が明確に分かれている<ref><pubmed>24638871</pubmed></ref>。[[Image:Fig.3.jpg|thumb|300px|<b>図3 マウスMGvのコンパートメント構造</b>各コンパートメントに独立したトノトピー構造を持ち、各大脳皮質聴覚野と島皮質聴覚領域へ投射する。<br>参考文献<ref><pubmed>23692741</pubmed></ref><ref><pubmed>24638871</pubmed></ref>を元に作成。]]
 MGvが主に受ける軸索は同側下丘の[[中心核]](central nucleus of the inferior colliculus, ICC)のニューロンからであり、興奮性入力は[[グルタミン酸]]作動性で[[NMDA型グルタミン酸受容体|NMDA]]/[[AMPA型グルタミン酸受容体]]に作用する。樹状突起には[[代謝型グルタミン酸受容体]]も存在する<ref><pubmed> 10444669 </pubmed></ref>。MGvへの抑制性入力は[[GABA]]作動性であり、[[GABAA受容体|GABA<sub>A</sub>]]/[[GABAB受容体|GABA<sub>B</sub>受容体]]に作用する<ref><pubmed>10322042 </pubmed></ref>。MGvから大脳皮質へは、Core領域([[前聴覚野]](anterior auditory field, AAF)、[[一次聴覚野]](primary auditory cortex, AI)、ネコや[[wikipedia:ja:イヌ|イヌ]]などの[[後聴覚野]](Posterior auditory field, P)のIII/IV層にトノトピー構造をもって軸索を伸ばす。一部の側枝はV層にも入力する。聴覚野からの下降性の直接入力は興奮性しかないが、[[視床網様核]](reticular thalamic nucleus, TRN)を経由してMGを抑制する系が存在する(図3)。<br> ネコにおいてもMGvから聴覚野AAFとAIに投射するニューロンは大部分が異なり、並列回路であることは示唆されている<ref><pubmed>15464293 </pubmed></ref>。マウスMGvにおいては並列回路を実現するさらに強固な構造があり、AAFに投射する部位は内側部、AIに投射する部位は外側部、島皮質聴覚領域(Insurar auditory field, IAF)に投射する部位は、腹内側部に存在し、MGvの中で部位が明確に分かれている<ref><pubmed>24638871</pubmed></ref>。[[Image:Fig.3.jpg|thumb|300px|<b>図3 マウスMGvのコンパートメント構造</b>各コンパートメントに独立したトノトピー構造を持ち、各大脳皮質聴覚野と島皮質聴覚領域へ投射する。参考文献<ref><pubmed>23692741</pubmed></ref><ref><pubmed>24638871</pubmed></ref>を元に作成。]]


====周波数特性====
====周波数特性====
45行目: 45行目:
== 機能  ==
== 機能  ==


 現在知られている知見を持って内側膝状体の担う聴覚情報処理機能を断定することは非常に難しい。しかし視床の一般的な特徴を俯瞰する時、内側膝状体の機能を推測することが可能である。[[Image:Hiroakitsukano Fig3.jpg|thumb|200px|<b>図3 ゲート機構図</b> 赤ニューロンは視床網様核の抑制性ニューロン。]]  
 現在知られている知見を持って内側膝状体の担う聴覚情報処理機能を断定することは非常に難しい。しかし視床の一般的な特徴を俯瞰する時、内側膝状体の機能を推測することが可能である。[[Image:Hiroakitsukano Fig3.jpg|thumb|200px|<b>図4 ゲート機構図</b> 赤ニューロンは視床網様核の抑制性ニューロン。]]  


 内側膝状体や聴覚野に至らずとも下丘までで基本的な聴覚情報処理はされていると考えられている<ref name=Paxinos />。一方、聴覚野は時間的な情報やハーモニーなど音の組合せ情報の処理・認知など高度な役割が与えられている<ref><pubmed> 18436653 </pubmed></ref><ref><pubmed> 16121182 </pubmed></ref>。内側膝状体はその間に位置し下丘と聴覚野を結び、聴覚野に送るべき情報を選別するゲートであると考えられる<ref><pubmed> 9464683 </pubmed></ref>(図3)。その指令塔の機能を有すると思われる視床網様核が[[腹側視床]]に存在している。視床網様核は視床を囲う様に位置する神経核で、その殆どがGABAニューロンで占められている神経核である。視床から皮質、皮質から視床に至る軸索はほぼ全て視床網様核に側枝を伸ばしている。視床網様核は聴覚野からのフィードバックを元にMGに抑制を与え、[[側方抑制]]などに貢献している<ref name=Paxinos />。さらに視床網様核は前頭葉からの情報を元に内側膝状体に抑制を与え、[[注意]]を向けた対象以外のことに抑制をかけるフィルター機能も有すると考えられている<ref><pubmed> 16837581 </pubmed></ref>。また視床網様核から内側膝状体への抑制回路は[[視覚]]など他のモダリティによる聴覚抑制にも関与している<ref><pubmed> 22101990 </pubmed></ref>。
 内側膝状体や聴覚野に至らずとも下丘までで基本的な聴覚情報処理はされていると考えられている<ref name=Paxinos />。一方、聴覚野は時間的な情報やハーモニーなど音の組合せ情報の処理・認知など高度な役割が与えられている<ref><pubmed> 18436653 </pubmed></ref><ref><pubmed> 16121182 </pubmed></ref>。内側膝状体はその間に位置し下丘と聴覚野を結び、聴覚野に送るべき情報を選別するゲートであると考えられる<ref><pubmed> 9464683 </pubmed></ref>(図3)。その指令塔の機能を有すると思われる視床網様核が[[腹側視床]]に存在している。視床網様核は視床を囲う様に位置する神経核で、その殆どがGABAニューロンで占められている神経核である。視床から皮質、皮質から視床に至る軸索はほぼ全て視床網様核に側枝を伸ばしている。視床網様核は聴覚野からのフィードバックを元にMGに抑制を与え、[[側方抑制]]などに貢献している<ref name=Paxinos />。さらに視床網様核は前頭葉からの情報を元に内側膝状体に抑制を与え、[[注意]]を向けた対象以外のことに抑制をかけるフィルター機能も有すると考えられている<ref><pubmed> 16837581 </pubmed></ref>。また視床網様核から内側膝状体への抑制回路は[[視覚]]など他のモダリティによる聴覚抑制にも関与している<ref><pubmed> 22101990 </pubmed></ref>。
84

回編集

案内メニュー