「瞬目反射条件づけ」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
(Tfuruya がページ「瞬目反射の条件づけ」を「瞬目反射条件づけ」に移動しました)
編集の要約なし
13行目: 13行目:


== 瞬目反射条件づけとは==
== 瞬目反射条件づけとは==
[[ファイル:MouseEBCC.jpg|サムネイル|300px|右|'''図1. 非拘束動物における瞬目反射条件づけ'''<br>フリームービングの実験動物で瞬目反射条件づけを可能とする手術法の概念図を示している。ラットやマウスを対象として開発された技法であるが、現在はウサギを含め多くの実験動物種における主流の方法論である。上瞼の裏に4本の電極を埋め込み、そのうち2本が眼輪筋のEMGの取得、残る2本がUSとしての電気刺激のために用いられる。電極は頭部に取り付けられた着脱可能なコネクタを介して、筋電計に繋がれる。]]
 瞬目反射条件づけ(eyeblink classical conditioning; EBCC、EBC)は、古典的条件づけ(パブロフ型条件づけ)の一種であり、記憶・学習の基盤となる神経構造や機構を研究するための行動課題として長年実験心理学や神経生理学の分野で利用されてきた。古典的条件づけは、「本来は生理的な反応を引き起こさない条件刺激(CS ; conditioned stimulus)」と「生理的な反応(無条件反応、UR; unconditioned responses)を引き起こす無条件刺激(US ; unconditioned stimulus)」を組み合わせて繰り返し提示すると、CSを与えただけでURに類似した応答である条件反射(CR ; conditioned responses)が見られるようになる学習形態である。最もよく知られている例はいわゆる“パブロフの犬”であり、CSとしてメトロノームの音を、USとして肉を提示すると、この対刺激によって、音のみで唾液の分泌を出すようになる<ref>''' I P Pavlov '''<br> Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex<br>'' Oxford University Press(Oxford)'':1927</ref>。瞬目条件づけの場合、通常、聴覚刺激もしくは視覚刺激をCSとし、瞬目を引き起こすUSとしては、角膜や眼瞼への穏やかな空気刺激もしくは電気刺激が用いられる。このCSとUSを組み合わせて何度も繰り返し提示すると、被験動物は、やがてUSに先行してCSのみでまばたきや瞬膜の伸張を起こすようになる。学習の度合いはCRの出現率、すなわちある試行中でCRが出現した試行数の割合によって示される。動物種やパラダイム(後述する)によってその値は大きく異なるものの、ウサギの場合、よく訓練されると非常に高い学習率(90%以上)に到達する。なお、条件づけが成立した後に、USを伴わずCSだけ繰り返し提示するとCRは次第に消失する。これを実験的消去と呼ぶ。しかし、一見完全に消去が起こった場合でも記憶痕跡が消失した訳ではなく、その後CSを呈示するとCRは急速に出現し、最初よりも少ない試行回数で元の学習到達率まで回復する。これを自発的回復と称する。また、マウス、ラット、モルモット、ネコ、サル、そして人間にいたるまで多様なほ乳類種を実験動物種としてその学習メカニズムが研究されてきたことも本学習の特徴的な点である(歴史的に最も集中的に調べられてきた動物種はウサギである。また特殊な標本を利用して、カメなどの非ほ乳類での研究例も存在する) <ref>''' D S Woodruff-Pak, J E Steinmetz '''<br> Eyeblink Classical Conditioning, Volume 1: Applications in Human<br>'' Kluwer Academic Publishers(Boston)'':2000</ref><ref>''' D S Woodruff-Pak, J E Steinmetz '''<br> Eyeblink Classical Conditioning, Volume 2: Animal Models <br>'' Kluwer Academic Publishers(Boston)'':2000</ref><ref name=ref4><pubmed> 26068663 </pubmed></ref>。後述する遅延課題の場合、その学習の記憶痕跡の場が、主に小脳にあることから、とりわけ神経科学の分野で小脳依存性学習もしくは運動学習としてよく分類•記述される。小脳が記憶形成の場であるとの論拠は、主に実験動物の脳損傷実験と小脳疾患患者の臨床例よりもたらされた<ref name=ref5><pubmed> 6701513 </pubmed></ref><ref name=ref6><pubmed> 8493536 </pubmed></ref>。また多くのニューラルネットワークモデルによっても瞬目反射条件づけの小脳理論が構築され、行動実験の結果との擦り合わせが図られている。
 瞬目反射条件づけ(eyeblink classical conditioning; EBCC、EBC)は、古典的条件づけ(パブロフ型条件づけ)の一種であり、記憶・学習の基盤となる神経構造や機構を研究するための行動課題として長年実験心理学や神経生理学の分野で利用されてきた。古典的条件づけは、「本来は生理的な反応を引き起こさない条件刺激(CS ; conditioned stimulus)」と「生理的な反応(無条件反応、UR; unconditioned responses)を引き起こす無条件刺激(US ; unconditioned stimulus)」を組み合わせて繰り返し提示すると、CSを与えただけでURに類似した応答である条件反射(CR ; conditioned responses)が見られるようになる学習形態である。最もよく知られている例はいわゆる“パブロフの犬”であり、CSとしてメトロノームの音を、USとして肉を提示すると、この対刺激によって、音のみで唾液の分泌を出すようになる<ref>''' I P Pavlov '''<br> Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex<br>'' Oxford University Press(Oxford)'':1927</ref>。瞬目条件づけの場合、通常、聴覚刺激もしくは視覚刺激をCSとし、瞬目を引き起こすUSとしては、角膜や眼瞼への穏やかな空気刺激もしくは電気刺激が用いられる。このCSとUSを組み合わせて何度も繰り返し提示すると、被験動物は、やがてUSに先行してCSのみでまばたきや瞬膜の伸張を起こすようになる。学習の度合いはCRの出現率、すなわちある試行中でCRが出現した試行数の割合によって示される。動物種やパラダイム(後述する)によってその値は大きく異なるものの、ウサギの場合、よく訓練されると非常に高い学習率(90%以上)に到達する。なお、条件づけが成立した後に、USを伴わずCSだけ繰り返し提示するとCRは次第に消失する。これを実験的消去と呼ぶ。しかし、一見完全に消去が起こった場合でも記憶痕跡が消失した訳ではなく、その後CSを呈示するとCRは急速に出現し、最初よりも少ない試行回数で元の学習到達率まで回復する。これを自発的回復と称する。また、マウス、ラット、モルモット、ネコ、サル、そして人間にいたるまで多様なほ乳類種を実験動物種としてその学習メカニズムが研究されてきたことも本学習の特徴的な点である(歴史的に最も集中的に調べられてきた動物種はウサギである。また特殊な標本を利用して、カメなどの非ほ乳類での研究例も存在する) <ref>''' D S Woodruff-Pak, J E Steinmetz '''<br> Eyeblink Classical Conditioning, Volume 1: Applications in Human<br>'' Kluwer Academic Publishers(Boston)'':2000</ref><ref>''' D S Woodruff-Pak, J E Steinmetz '''<br> Eyeblink Classical Conditioning, Volume 2: Animal Models <br>'' Kluwer Academic Publishers(Boston)'':2000</ref><ref name=ref4><pubmed> 26068663 </pubmed></ref>。後述する遅延課題の場合、その学習の記憶痕跡の場が、主に小脳にあることから、とりわけ神経科学の分野で小脳依存性学習もしくは運動学習としてよく分類•記述される。小脳が記憶形成の場であるとの論拠は、主に実験動物の脳損傷実験と小脳疾患患者の臨床例よりもたらされた<ref name=ref5><pubmed> 6701513 </pubmed></ref><ref name=ref6><pubmed> 8493536 </pubmed></ref>。また多くのニューラルネットワークモデルによっても瞬目反射条件づけの小脳理論が構築され、行動実験の結果との擦り合わせが図られている。


 もっとも初期の瞬目反射条件づけの現象についての報告は人間を対象としたもので、1922年の文献まで遡れる<ref>'''H Cason'''<br> The conditioned eyelid reaction <br>'' J. Exp. Psychol. 5(3); 153-196.'':1922</ref>。その後、心理学における行動主義の台頭に相まって、多くの重要な心理学的知見が、この瞬目反射条件づけを利用して発見された。例えば、ハンフリーズ効果、すなわち、連続強化よりも部分強化で条件づけられた行動の方が、消去抵抗が強くなるという現象は、瞬目反射条件づけを用いて発見されたものである<ref>'''L G Humphreys'''<br> The effect of random alteration of reinforcement on the acquisition and extinction of conditioned eyeblink reactions <br>'' J. Exp. Psychol. 25(2); 141-158.'':1939</ref>(ちなみに、この効果の発見により、瞬目反射条件づけの実験では通常CSとUSの対提示だけではなく10回に1回程度CSのみ、あるいはさらにUSのみの試行を組み合わせて行うことが多い)。60年代、Isidore Gormezanoによりウサギに対してこの連合学習が導入されて以降は、数多くの実験動物を用いた生理•心理学的研究が実施された<ref name=ref9><pubmed> 14168641 </pubmed></ref>。我が国においても、主に人間を用いた瞬目反射条件づけの心理学的研究が盛んに行われていた時期がある<ref name=ref10>'''山田冨美雄'''<br>瞬目反射の先行刺激効果:その心理学的意義と応用<br>''多賀出版(東京)'':1993</ref>。1980年代後半になり、Ronald W Stantonによって、発達•加齢と学習との相関を調べる目的で、ラットに対して非拘束下での瞬目反射条件づけを可能とする手技が開発された<ref><pubmed> 3166733</pubmed></ref>。これは、上瞼の裏側に4本の電極を埋め込み、そのうち2本を眼輪筋のEMGの取得、残る2本をUSとしての電気刺激に用いるものである(図1)。90年代に入ると、この方法論がノックアウトマウスにそのまま適応され、瞬目反射条件づけの行動遺伝学が開始された<ref name=ref12><pubmed> 7954803 </pubmed></ref>。特に、小脳のシナプス可塑性である長期抑圧 (Long-term depression; LTD)(後述)と瞬目反射条件づけ遅延課題との関係性が集中的に調べられることになる<ref name=ref12 />。こうした行動遺伝学的研究によって、代謝グルタミン酸受容体1型(mGluR1)、PKCγ、GluRδ2、内在性カンナビノイド受容体CB1など多くの分子が小脳LTDと瞬目反射条件づけ遅延課題の双方に必要であることが明らかとなり、前庭動眼反射と同様、瞬目反射条件づけにおいても、LTDが記憶形成の神経基盤であるとの「小脳LTD仮説(後述)」が90年代後半には説得力をもって醸成されていった。今世紀に入り、瞬目反射条件づけ痕跡課題も遺伝子改変マウスに適応され、海馬におけるシナプス可塑性との相関性が示唆されている<ref><pubmed> 11285019</pubmed></ref>。さらには、特定の時期かつ特定の神経細胞のみで機能を失活させたミュータントマウスに適用することにより、小脳や海馬における特定のシナプス回路が瞬目反射条件づけの記憶形成や保持に果たす役割も詳らかにされつつある<ref><pubmed> 12492436</pubmed></ref><ref name=ref15><pubmed> 17923666</pubmed></ref> <ref name=ref16><pubmed> 16452679</pubmed></ref> 。
 もっとも初期の瞬目反射条件づけの現象についての報告は人間を対象としたもので、1922年の文献まで遡れる<ref>'''H Cason'''<br> The conditioned eyelid reaction <br>'' J. Exp. Psychol. 5(3); 153-196.'':1922</ref>。その後、心理学における行動主義の台頭に相まって、多くの重要な心理学的知見が、この瞬目反射条件づけを利用して発見された。例えば、ハンフリーズ効果、すなわち、連続強化よりも部分強化で条件づけられた行動の方が、消去抵抗が強くなるという現象は、瞬目反射条件づけを用いて発見されたものである<ref>'''L G Humphreys'''<br> The effect of random alteration of reinforcement on the acquisition and extinction of conditioned eyeblink reactions <br>'' J. Exp. Psychol. 25(2); 141-158.'':1939</ref>(ちなみに、この効果の発見により、瞬目反射条件づけの実験では通常CSとUSの対提示だけではなく10回に1回程度CSのみ、あるいはさらにUSのみの試行を組み合わせて行うことが多い)。60年代、Isidore Gormezanoによりウサギに対してこの連合学習が導入されて以降は、数多くの実験動物を用いた生理•心理学的研究が実施された<ref name=ref9><pubmed> 14168641 </pubmed></ref>。我が国においても、主に人間を用いた瞬目反射条件づけの心理学的研究が盛んに行われていた時期がある<ref name=ref10>'''山田冨美雄'''<br>瞬目反射の先行刺激効果:その心理学的意義と応用<br>''多賀出版(東京)'':1993</ref>。1980年代後半になり、Ronald W Stantonによって、発達•加齢と学習との相関を調べる目的で、ラットに対して非拘束下での瞬目反射条件づけを可能とする手技が開発された<ref><pubmed> 3166733</pubmed></ref>。これは、上瞼の裏側に4本の電極を埋め込み、そのうち2本を眼輪筋のEMGの取得、残る2本をUSとしての電気刺激に用いるものである(図1)。90年代に入ると、この方法論がノックアウトマウスにそのまま適応され、瞬目反射条件づけの行動遺伝学が開始された<ref name=ref12><pubmed> 7954803 </pubmed></ref>。特に、小脳のシナプス可塑性である長期抑圧 (Long-term depression; LTD)(後述)と瞬目反射条件づけ遅延課題との関係性が集中的に調べられることになる<ref name=ref12 />。こうした行動遺伝学的研究によって、代謝グルタミン酸受容体1型(mGluR1)、PKCγ、GluRδ2、内在性カンナビノイド受容体CB1など多くの分子が小脳LTDと瞬目反射条件づけ遅延課題の双方に必要であることが明らかとなり、前庭動眼反射と同様、瞬目反射条件づけにおいても、LTDが記憶形成の神経基盤であるとの「小脳LTD仮説(後述)」が90年代後半には説得力をもって醸成されていった。今世紀に入り、瞬目反射条件づけ痕跡課題も遺伝子改変マウスに適応され、海馬におけるシナプス可塑性との相関性が示唆されている<ref><pubmed> 11285019</pubmed></ref>。さらには、特定の時期かつ特定の神経細胞のみで機能を失活させたミュータントマウスに適用することにより、小脳や海馬における特定のシナプス回路が瞬目反射条件づけの記憶形成や保持に果たす役割も詳らかにされつつある<ref><pubmed> 12492436</pubmed></ref><ref name=ref15><pubmed> 17923666</pubmed></ref> <ref name=ref16><pubmed> 16452679</pubmed></ref> 。
[[ファイル:MouseEBCC.jpg|サムネイル|300px|右|'''図1. 非拘束動物における瞬目反射条件づけ'''<br>フリームービングの実験動物で瞬目反射条件づけを可能とする手術法の概念図を示している。ラットやマウスを対象として開発された技法であるが、現在はウサギを含め多くの実験動物種における主流の方法論である。上瞼の裏に4本の電極を埋め込み、そのうち2本が眼輪筋のEMGの取得、残る2本がUSとしての電気刺激のために用いられる。電極は頭部に取り付けられた着脱可能なコネクタを介して、筋電計に繋がれる。]]


== 学習パラダイムとしての利点と独自性 ==
== 学習パラダイムとしての利点と独自性 ==
26行目: 26行目:


== 遅延(delay)課題と痕跡(trace)課題 ==
== 遅延(delay)課題と痕跡(trace)課題 ==
[[ファイル:Ykishimoto_fig_2.jpg|サムネイル|300px|右|'''図2. 瞬目反射条件づけの遅延課題と痕跡課題におけるCSとUSの時間的関係'''<br>(A) 遅延課題におけるCSとUSの時間的関係、(B) 痕跡課題におけるCSとUSの時間的関係。遅延課題と痕跡課題の違いは、前者ではCSとUSの時間的重なりがあるのに対し、後者ではCSとUSの間に空白時間(痕跡間隔)が存在することである。CSとUSの長さや刺激間隔は、実験動物種や実験の用途によって変化する。遅延課題が一般的に小脳依存性の運動学習として記述されるのに対し、痕跡課題は、その痕跡間隔が十分に長い場合、海馬依存性の課題になることが知られている。]]
 前述したように、瞬目反射条件づけではUSの開始前にCSが提示されるが、この学習には、主に両刺激の時間特性の違いによって、遅延(delay)課題と痕跡(trace)課題の2種類の行動パラダイムが存在する(図2)。遅延課題は、CSとUSに時間的な重なりがあり、かつ同時に終了するようなパラダイムである(図2A)。一方、痕跡課題では、CSが終了してからUSが提示される。言いかえれば、痕跡課題では、CSとUSの間に無刺激の期間(痕跡間隔)が挿入される(図2B)。両課題ともその記憶獲得に小脳が必要であるが、痕跡課題においては、その痕跡間隔が十分に大きい場合、記憶の獲得に小脳に加えて海馬が必須となる。例えば、ウサギやマウスでは痕跡間隔が500 ms以上の場合、ラットでは250 ms以上の場合、痕跡課題が海馬依存性学習になることが示されている<ref name=ref16 /><ref><pubmed> 2346619 </pubmed></ref><ref><pubmed> 10512579 </pubmed></ref>。なお、遅延課題の場合、海馬を除去しても学習は成立するが、海馬ニューロンの活動を電気的に、あるいはスコポラミンの投与などで薬理学的に撹乱させると、CRの獲得が遅くなることが知られている<ref><pubmed> 6836277 </pubmed></ref>。従って、遅延課題の成立に海馬は不要であるものの、海馬の異常は遅延課題に影響を与えるという意味において両者は関連性を持っているわけである。実際70年代までは、遅延課題を対象とした研究でも、小脳より海馬ニューロン活動との関連が興味の中心とされていた。小脳と遅延課題との関係が実験的に検討され始めたのは80年代になってからである。ところで、小脳は痕跡課題においても必要であると先述したが、小脳皮質のシナプス可塑性に障害を持つノックアウトマウスや小脳皮質の唯一の出力細胞であるプルキンエ細胞(PC)が消失した''pcd'' (Purkinje cell deficient) マウスでは、痕跡課題の学習能力が正常に保たれていることが発見されてから、痕跡課題には小脳皮質は必須ではないという同意が得られつつある<ref><pubmed> 19931625 </pubmed></ref><ref><pubmed> 11285022 </pubmed></ref>。つまり、小脳核は、遅延、痕跡両課題に必須であるものの、小脳皮質は遅延課題のみで重要な役割を担っている可能性がある。
 前述したように、瞬目反射条件づけではUSの開始前にCSが提示されるが、この学習には、主に両刺激の時間特性の違いによって、遅延(delay)課題と痕跡(trace)課題の2種類の行動パラダイムが存在する(図2)。遅延課題は、CSとUSに時間的な重なりがあり、かつ同時に終了するようなパラダイムである(図2A)。一方、痕跡課題では、CSが終了してからUSが提示される。言いかえれば、痕跡課題では、CSとUSの間に無刺激の期間(痕跡間隔)が挿入される(図2B)。両課題ともその記憶獲得に小脳が必要であるが、痕跡課題においては、その痕跡間隔が十分に大きい場合、記憶の獲得に小脳に加えて海馬が必須となる。例えば、ウサギやマウスでは痕跡間隔が500 ms以上の場合、ラットでは250 ms以上の場合、痕跡課題が海馬依存性学習になることが示されている<ref name=ref16 /><ref><pubmed> 2346619 </pubmed></ref><ref><pubmed> 10512579 </pubmed></ref>。なお、遅延課題の場合、海馬を除去しても学習は成立するが、海馬ニューロンの活動を電気的に、あるいはスコポラミンの投与などで薬理学的に撹乱させると、CRの獲得が遅くなることが知られている<ref><pubmed> 6836277 </pubmed></ref>。従って、遅延課題の成立に海馬は不要であるものの、海馬の異常は遅延課題に影響を与えるという意味において両者は関連性を持っているわけである。実際70年代までは、遅延課題を対象とした研究でも、小脳より海馬ニューロン活動との関連が興味の中心とされていた。小脳と遅延課題との関係が実験的に検討され始めたのは80年代になってからである。ところで、小脳は痕跡課題においても必要であると先述したが、小脳皮質のシナプス可塑性に障害を持つノックアウトマウスや小脳皮質の唯一の出力細胞であるプルキンエ細胞(PC)が消失した''pcd'' (Purkinje cell deficient) マウスでは、痕跡課題の学習能力が正常に保たれていることが発見されてから、痕跡課題には小脳皮質は必須ではないという同意が得られつつある<ref><pubmed> 19931625 </pubmed></ref><ref><pubmed> 11285022 </pubmed></ref>。つまり、小脳核は、遅延、痕跡両課題に必須であるものの、小脳皮質は遅延課題のみで重要な役割を担っている可能性がある。
[[ファイル:Ykishimoto_fig_2.jpg|サムネイル|300px|右|'''図2. 瞬目反射条件づけの遅延課題と痕跡課題におけるCSとUSの時間的関係'''<br>(A) 遅延課題におけるCSとUSの時間的関係、(B) 痕跡課題におけるCSとUSの時間的関係。遅延課題と痕跡課題の違いは、前者ではCSとUSの時間的重なりがあるのに対し、後者ではCSとUSの間に空白時間(痕跡間隔)が存在することである。CSとUSの長さや刺激間隔は、実験動物種や実験の用途によって変化する。遅延課題が一般的に小脳依存性の運動学習として記述されるのに対し、痕跡課題は、その痕跡間隔が十分に長い場合、海馬依存性の課題になることが知られている。]]


== 瞬目反射条件づけの神経回路とLTD仮説 ==
== 瞬目反射条件づけの神経回路とLTD仮説 ==
[[ファイル:Ykishimoto_fig_3.jpg|サムネイル|300px|右|'''図3. 瞬目反射条件づけ(遅延課題)に関わる小脳回路'''<br>瞬目反射条件づけ(遅延課題)に関わる小脳神経回路図を非常に簡略化して示したものである。CSの情報は、顆粒細胞を辿って小脳皮質のプルキンエ細胞に入力するとともに、苔状繊維を通って中位核にも入力する(紫色の矢印で示す)。他方、USの情報は、下オリーブ核から登上繊維を通ってプルキンエ細胞に入力するとともに、中位核にも入力する(橙色の矢印で示す)。従って、小脳皮質と小脳核の二つの部位でCS-USの連合が生じる。小脳LTDは、平行繊維とプルキンエ細胞間において神経伝達物質の伝達効率が減少する現象である。LTD仮説によれば、プルキンエ細胞から中位核への抑制性出力により、通常はCSのみでCRは出現しないが、LTDによってこの抑制が解除されるとCSのみでCRを発現する経路が顕在化すると考えられている。]]


 瞬目反射条件づけ(遅延課題)に関与する小脳の神経回路について概説する。非常に簡略した模式図を図3に示した。
 瞬目反射条件づけ(遅延課題)に関与する小脳の神経回路について概説する。非常に簡略した模式図を図3に示した。


[[ファイル:Ykishimoto_fig_3.jpg|サムネイル|300px|右|'''図3. 瞬目反射条件づけ(遅延課題)に関わる小脳回路'''<br>瞬目反射条件づけ(遅延課題)に関わる小脳神経回路図を非常に簡略化して示したものである。CSの情報は、顆粒細胞を辿って小脳皮質のプルキンエ細胞に入力するとともに、苔状繊維を通って中位核にも入力する(紫色の矢印で示す)。他方、USの情報は、下オリーブ核から登上繊維を通ってプルキンエ細胞に入力するとともに、中位核にも入力する(橙色の矢印で示す)。従って、小脳皮質と小脳核の二つの部位でCS-USの連合が生じる。小脳LTDは、平行繊維とプルキンエ細胞間において神経伝達物質の伝達効率が減少する現象である。LTD仮説によれば、プルキンエ細胞から中位核への抑制性出力により、通常はCSのみでCRは出現しないが、LTDによってこの抑制が解除されるとCSのみでCRを発現する経路が顕在化すると考えられている。]]
=== 瞬目の反射経路 ===
[[ファイル:Ykishimoto_fig_4.jpg|サムネイル|300px|右|'''図4. 眼輪筋筋電図法およびビデオカメラ法による瞬目条件反射の解析例'''<br>(A) 眼輪筋筋電図法による筋電位の例(マウス)。上にCSとUSのタイミングを並べて示している。条件づけ成立前にはUS開始前には筋電位の有意な変化が見られないのに対し、成立後にはCSが開始した後USの開始前に大きな筋電位変化が観察されている。これがCRである。
(B) ビデオカメラ法による上瞼の動きのトラッキングの例(サル)。緑色の軌跡は上瞼の位置を表しており、赤色の軌跡は上瞼の動きの速度を示している。左のパネルは、瞳と上瞼の位置を表す。]]


=== 瞬目の反射経路 ===
 USが角膜に到達すると、その感覚情報は三叉神経核(trigeminal nucleus)に運ばれ、外転神経核に中継される。これらの神経核からの出力が、USに対する瞬目の無条件反射を引き起こす様々な眼筋を制御している。瞬目の主動筋である眼輪筋(''orbicularis oculi'' muscle)の筋電図(EMG)法は、有効で感度の高い瞬目の検出法と考えられ、現在では瞬目反射条件づけ研究においてもっとも頻用される行動出力の評価指標である(図4A)。この眼輪筋筋電図法の短所として顔面部への電極装着による異物感があげられるが、瞬目反射の動作筋そのものの活動を記録するという意味において計測にはもっとも適しているとされる<ref name=ref10 />。その他に、ビデオカメラを用いて、瞼の物理的な位置をトラッキングする方法 (図4B)や、小型の磁気サーチコイルを用いた方法論が必要に応じて利用される <ref name=ref4 /><ref name=ref10 />。
 USが角膜に到達すると、その感覚情報は三叉神経核(trigeminal nucleus)に運ばれ、外転神経核に中継される。これらの神経核からの出力が、USに対する瞬目の無条件反射を引き起こす様々な眼筋を制御している。瞬目の主動筋である眼輪筋(''orbicularis oculi'' muscle)の筋電図(EMG)法は、有効で感度の高い瞬目の検出法と考えられ、現在では瞬目反射条件づけ研究においてもっとも頻用される行動出力の評価指標である(図4A)。この眼輪筋筋電図法の短所として顔面部への電極装着による異物感があげられるが、瞬目反射の動作筋そのものの活動を記録するという意味において計測にはもっとも適しているとされる<ref name=ref10 />。その他に、ビデオカメラを用いて、瞼の物理的な位置をトラッキングする方法 (図4B)や、小型の磁気サーチコイルを用いた方法論が必要に応じて利用される <ref name=ref4 /><ref name=ref10 />。
[[ファイル:Ykishimoto_fig_4.jpg|サムネイル|300px|右|'''図4. 眼輪筋筋電図法およびビデオカメラ法による瞬目条件反射の解析例'''<br>(A) 眼輪筋筋電図法による筋電位の例(マウス)。上にCSとUSのタイミングを並べて示している。条件づけ成立前にはUS開始前には筋電位の有意な変化が見られないのに対し、成立後にはCSが開始した後USの開始前に大きな筋電位変化が観察されている。これがCRである。
(B) ビデオカメラ法による上瞼の動きのトラッキングの例(サル)。緑色の軌跡は上瞼の位置を表しており、赤色の軌跡は上瞼の動きの速度を示している。左のパネルは、瞳と上瞼の位置を表す
。]]


=== CS経路 ===
=== CS経路 ===

案内メニュー