9,444
回編集
細編集の要約なし |
細編集の要約なし |
||
46行目: | 46行目: | ||
|- | |- | ||
| セリン/スレオニンキナーゼ | | セリン/スレオニンキナーゼ | ||
| | | cAMP依存性タンパク質リン酸化酵素, AKAP18 | ||
|- | |- | ||
| [[ホスファターゼ]] | | [[ホスファターゼ]] | ||
| [[カルシニューリン]]B | | [[カルシニューリン]]B | ||
|- | |- | ||
| rowspan="2" | ''' | | rowspan="2" | '''GTP結合タンパク質''' | ||
| | | 三量体GTP結合タンパク質Gαサブユニット | ||
| Gαi1, Gαo, Gαt, Gαx | | Gαi1, Gαo, Gαt, Gαx | ||
|- | |- | ||
58行目: | 58行目: | ||
| Arf-1, Arf-3, Arf-5, Arf-6 | | Arf-1, Arf-3, Arf-5, Arf-6 | ||
|- | |- | ||
| '''Ca<sup>2+</sup>結合/[[ | | '''Ca<sup>2+</sup>結合/[[EFハンドタンパク質]]''' | ||
| | | | ||
| [[リカバリン]], [[ニューロカルシン]], [[アプリカルシン]], [[Calcium binding protein P22]], [[NAP-22]], [[ヒッポカルシン]], [[guanylyl cyclase activating protein]] 1 (GCAP1), GCAP2, [[S-モデュリン]], [[Rem-1]] | | [[リカバリン]], [[ニューロカルシン]], [[アプリカルシン]], [[Calcium binding protein P22]], [[NAP-22]], [[ヒッポカルシン]], [[guanylyl cyclase activating protein]] 1 (GCAP1), GCAP2, [[S-モデュリン]], [[Rem-1]] | ||
|- | |- | ||
| '''細胞膜/ | | '''細胞膜/細胞骨格結合タンパク質''' | ||
| | | | ||
| MARCKS,[[アネキシン]]XIII, [[ラプシン]], [[パリディン]], [[ヒサクトフィリン]]2 | | MARCKS,[[アネキシン]]XIII, [[ラプシン]], [[パリディン]], [[ヒサクトフィリン]]2 | ||
107行目: | 107行目: | ||
[[Image:Myristoylation Fig3.png|thumb|400px|'''図3 N-ミリストイル化タンパク質の膜結合機構''']] 多くの''N''-ミリストイル化タンパク質はミリスチン酸付加により、疎水性が上昇し、細胞膜への親和性が向上する(図3)。しかしながら、膜表面にタンパク質を安定に繋ぎとめるためにはミリスチン酸の効果だけでは充分ではない(図3①)。多くの場合、安定な膜結合性を獲得するための第2の機構を有しており、これらが不可逆的修飾である''N''-ミリストイル化タンパク質の可逆的な細胞膜-細胞質間輸送を可能にしている。主に『ミリストイル化+パルミトイル化』と『ミリストイル化+ポリ塩基性クラスター』の2つの機構からなる。 | [[Image:Myristoylation Fig3.png|thumb|400px|'''図3 N-ミリストイル化タンパク質の膜結合機構''']] 多くの''N''-ミリストイル化タンパク質はミリスチン酸付加により、疎水性が上昇し、細胞膜への親和性が向上する(図3)。しかしながら、膜表面にタンパク質を安定に繋ぎとめるためにはミリスチン酸の効果だけでは充分ではない(図3①)。多くの場合、安定な膜結合性を獲得するための第2の機構を有しており、これらが不可逆的修飾である''N''-ミリストイル化タンパク質の可逆的な細胞膜-細胞質間輸送を可能にしている。主に『ミリストイル化+パルミトイル化』と『ミリストイル化+ポリ塩基性クラスター』の2つの機構からなる。 | ||
前者は細胞質において、もうひとつの主要な脂肪酸アシル化修飾である''S''-パルミトイル化を受けるもので、二重の脂質修飾(dual acylation)により疎水性が著しく向上し細胞膜へと輸送される。この場合には、まず''N''-ミリストイル化がおこり、その後近傍のシステイン残基が''S''-パルミトイル化を受ける(パルミトイル化の項を参照)。不可逆的な''N''-ミリストイル化に対して、''S''-パルミトイル化は酵素依存的なダイナミックの修飾サイクルを有し、[[パルミトイル化#S-.E3.83.91.E3.83.AB.E3.83.9F.E3.83.88.E3.82.A4.E3.83.AB.E5.8C.96.E9.85.B5.E7.B4.A0.E3.81.AE.E7.99.BA.E8.A6.8B.E3.81.A8.E3.81.9D.E3.81.AE.E5.8F.8D.E5.BF.9C.E6.A9.9F.E6.A7.8B|DHHCファミリー''S''-パルミトイルアシル転移酵素]](PAT; palmitoyl acyl transferase)によるパルミチン酸の付加(②)と[[wikipedia:Palmitoyl protein thioesterase|タンパク質パルミトイルチオエステラーゼ]](PPT; protein palmitoyl thioesterase) による脱パルミトイル化からなる(③)。ミリストイル化タンパク質は''S''-パルミトイル化サイクルを利用して可逆的な細胞質-細胞膜サイクルを獲得しているのである。また、多くの場合''S''-パルミトイル化タンパク質は[[脂質ラフト]]/[[カベオラ]]へ輸送されることが示唆されており、機能性膜ドメイン形成に重要な役割を果たしていると考えられている。詳しくはパルミトイル化の項を参照されたい。二重脂質修飾を受けるタンパク質の例として[[チロシンリン酸化#.E9.9D.9E.E5.8F.97.E5.AE.B9.E4.BD.93.E5.9E.8B.E3.83.81.E3.83.AD.E3.82.B7.E3.83.B3.E3.82.AD.E3.83.8A.E3.83.BC.E3.82.BC|Srcファミリータンパク質]](Yes、Fyn、Lyn、Lck、Hcr、Fgr、Yrk)や[[ | 前者は細胞質において、もうひとつの主要な脂肪酸アシル化修飾である''S''-パルミトイル化を受けるもので、二重の脂質修飾(dual acylation)により疎水性が著しく向上し細胞膜へと輸送される。この場合には、まず''N''-ミリストイル化がおこり、その後近傍のシステイン残基が''S''-パルミトイル化を受ける(パルミトイル化の項を参照)。不可逆的な''N''-ミリストイル化に対して、''S''-パルミトイル化は酵素依存的なダイナミックの修飾サイクルを有し、[[パルミトイル化#S-.E3.83.91.E3.83.AB.E3.83.9F.E3.83.88.E3.82.A4.E3.83.AB.E5.8C.96.E9.85.B5.E7.B4.A0.E3.81.AE.E7.99.BA.E8.A6.8B.E3.81.A8.E3.81.9D.E3.81.AE.E5.8F.8D.E5.BF.9C.E6.A9.9F.E6.A7.8B|DHHCファミリー''S''-パルミトイルアシル転移酵素]](PAT; palmitoyl acyl transferase)によるパルミチン酸の付加(②)と[[wikipedia:Palmitoyl protein thioesterase|タンパク質パルミトイルチオエステラーゼ]](PPT; protein palmitoyl thioesterase) による脱パルミトイル化からなる(③)。ミリストイル化タンパク質は''S''-パルミトイル化サイクルを利用して可逆的な細胞質-細胞膜サイクルを獲得しているのである。また、多くの場合''S''-パルミトイル化タンパク質は[[脂質ラフト]]/[[カベオラ]]へ輸送されることが示唆されており、機能性膜ドメイン形成に重要な役割を果たしていると考えられている。詳しくはパルミトイル化の項を参照されたい。二重脂質修飾を受けるタンパク質の例として[[チロシンリン酸化#.E9.9D.9E.E5.8F.97.E5.AE.B9.E4.BD.93.E5.9E.8B.E3.83.81.E3.83.AD.E3.82.B7.E3.83.B3.E3.82.AD.E3.83.8A.E3.83.BC.E3.82.BC|Srcファミリータンパク質]](Yes、Fyn、Lyn、Lck、Hcr、Fgr、Yrk)や[[三量体型GTP結合タンパク質|Gαサブユニット]](Gα<sub>i1</sub>、Gα<sub>o</sub>、Gα<sub>z</sub>など)、[[内皮型一酸化窒素合成酵素]](eNOS、endothelial nitric oxide synthase)などが挙げられる。 | ||
後者の『ミリストイル化+ポリ塩基性アミノ酸クラスター』はミリストイル化タンパク質自体がもつ物理化学的特徴を利用した機構で、ミリストイル化タンパク質の塩基性アミノ酸クラスターと細胞膜の酸性[[wikipedia:ja:リン脂質|リン脂質]]([[wikipedia:Phosphatidylserine|ホスファチジルセリン]]、[[ホスファチジルイノシトール]]など)の間の電荷的相互作用により膜への親和性を向上させている(④)。Srcが代表例である。膜からの脱離にはいくつかのパターンが報告されているが、リガンド結合によるコンフォーメーション変化によりミリストイル基がタンパク質内部に埋め込まれる機構(⑤)や、タンパク質キナーゼによるリン酸基の負電荷による斥力による機構(⑥)があり、「ミリストイルスイッチ」と呼ばれる。リガンド結合型のスイッチには、カルシウムセンサータンパク質[[wikipedia:Recoverin|レコヴェリン]](recoverin)-カルシウムイオン相互作用がよく知られている。リン酸化型スイッチでは、[[wikipedia:MARCKS|MARCKS]](myristoylated alanine-rich C kinase substrate)が代表例として知られている。興味深いことにSrcはその塩基性アミノ酸モチーフと細胞膜リン脂質との相互作用が強いため、モノリン酸化のみでは膜から脱離しないことが明らかになっている<ref><pubmed>9485361</pubmed></ref>。 | 後者の『ミリストイル化+ポリ塩基性アミノ酸クラスター』はミリストイル化タンパク質自体がもつ物理化学的特徴を利用した機構で、ミリストイル化タンパク質の塩基性アミノ酸クラスターと細胞膜の酸性[[wikipedia:ja:リン脂質|リン脂質]]([[wikipedia:Phosphatidylserine|ホスファチジルセリン]]、[[ホスファチジルイノシトール]]など)の間の電荷的相互作用により膜への親和性を向上させている(④)。Srcが代表例である。膜からの脱離にはいくつかのパターンが報告されているが、リガンド結合によるコンフォーメーション変化によりミリストイル基がタンパク質内部に埋め込まれる機構(⑤)や、タンパク質キナーゼによるリン酸基の負電荷による斥力による機構(⑥)があり、「ミリストイルスイッチ」と呼ばれる。リガンド結合型のスイッチには、カルシウムセンサータンパク質[[wikipedia:Recoverin|レコヴェリン]](recoverin)-カルシウムイオン相互作用がよく知られている。リン酸化型スイッチでは、[[wikipedia:MARCKS|MARCKS]](myristoylated alanine-rich C kinase substrate)が代表例として知られている。興味深いことにSrcはその塩基性アミノ酸モチーフと細胞膜リン脂質との相互作用が強いため、モノリン酸化のみでは膜から脱離しないことが明らかになっている<ref><pubmed>9485361</pubmed></ref>。 |