16,040
回編集
細 (→超伝導量子干渉計の概要) |
細編集の要約なし |
||
6行目: | 6行目: | ||
</div> | </div> | ||
英:magnetoencephalography 独: | 英:magnetoencephalography 独: Magnetoenzephalographie 仏:magnétoencéphalographie | ||
同義語・類義語:脳磁図、脳磁計 | 同義語・類義語:脳磁図、脳磁計 | ||
16行目: | 16行目: | ||
脳磁法(magnetoencephalography, MEG)とは、脳の神経活動に伴って発生する磁場(磁界)を頭皮上から完全非侵襲的に計測する技術である。1972年に初めてヒトの脳から生じる磁場信号の検出に成功<ref name=ref1><pubmed>5009769</pubmed></ref>した当時は単チャンネルであったが、その後多チャンネル化が急速に進み現在では100チャンネル以上のセンサーを有する多チャンネル全頭型装置(図2)が一般的になり、基礎研究及び臨床研究に用いられている。 | 脳磁法(magnetoencephalography, MEG)とは、脳の神経活動に伴って発生する磁場(磁界)を頭皮上から完全非侵襲的に計測する技術である。1972年に初めてヒトの脳から生じる磁場信号の検出に成功<ref name=ref1><pubmed>5009769</pubmed></ref>した当時は単チャンネルであったが、その後多チャンネル化が急速に進み現在では100チャンネル以上のセンサーを有する多チャンネル全頭型装置(図2)が一般的になり、基礎研究及び臨床研究に用いられている。 | ||
==磁場の起源== | |||
神経細胞の興奮に伴う磁場変化は非常に微弱であるため、検出可能な信号を生み出すためには隣接する数万の細胞が同期して、なおかつ同じ向きの電流を発生させる必要がある<ref name=ref2><pubmed>16613883</pubmed></ref>。この条件を満たす信号源として、脳表面(もしくは皮質6層構造)に対して垂直に配列する錐体細胞樹状突起における細胞内シナプス後電流(excitatory postsynaptic current)がある。また錐体細胞の配列も重要である。脳磁計で計測できる信号は主に頭蓋表面に平行に流れる電流により生じる磁場であって、頭蓋表面に対して垂直方向の電流に関してはうまく記録できない。また、脳活動より生じた磁界の強さは距離の2乗に反比例して減衰するため脳深部の神経活動の記録は困難である。 | |||
==超伝導量子干渉計== | ==超伝導量子干渉計== | ||
27行目: | 30行目: | ||
:'''平面方向型グラジオメーター'''は頭皮の接線方向の磁場差分を計測しているため、環境磁場の影響を打ち消しながら近傍の信号源からの磁場に対しては高い感度を持つという特徴を持つ。反面、平面方向型グラジオメーターの計測磁場振幅は信号源から遠いと大きく減衰するため、脳深部からの磁場計測には適さない。またマグネトメーターと軸方向型グラジオメーターの計測磁場分布は似たようなパターンを示すのに対して、平面方向型グラジオメーターの計測磁場分布は大きく異なることにも注意が必要である。例えば、信号源の直上における計測磁場密度はマグネトメーターや軸方向型グラジオメーターでは0に近い値を示すのに対して、平面方向型グラジオメーターでは極大または極小となる。 | :'''平面方向型グラジオメーター'''は頭皮の接線方向の磁場差分を計測しているため、環境磁場の影響を打ち消しながら近傍の信号源からの磁場に対しては高い感度を持つという特徴を持つ。反面、平面方向型グラジオメーターの計測磁場振幅は信号源から遠いと大きく減衰するため、脳深部からの磁場計測には適さない。またマグネトメーターと軸方向型グラジオメーターの計測磁場分布は似たようなパターンを示すのに対して、平面方向型グラジオメーターの計測磁場分布は大きく異なることにも注意が必要である。例えば、信号源の直上における計測磁場密度はマグネトメーターや軸方向型グラジオメーターでは0に近い値を示すのに対して、平面方向型グラジオメーターでは極大または極小となる。 | ||
==脳波との比較== | ==脳波との比較== |