差分

移動先: 案内検索

腸管神経系

977 バイト追加, 2015年9月24日 (木) 13:39
編集の要約なし
==腸管神経系の構造==
[[image:腸管神経系1.png|thumb|300px|'''図1.消化管に分布する腸管神経節'''<br>筋層間神経叢(赤)は食道上部から内肛門括約筋に至る消化管全域に分布する。<br>粘膜下神経叢は主の小腸と大腸に分布する。<br>孤立神経節は胃や食道の粘膜下と消化管全域の粘膜下に存在する<ref name=ref1>'''Furness J. B.'''<pubmedbr>The enteric Nervous System.</pubmedbr>Blackwell, Oxford pp.32-33, 2006. </ref>より引用]]
[[image:腸管神経系2.png|thumb|300px|'''図2.小腸壁に存在する神経叢'''<br>(メルボルン大学 J.B Furness教授の好意により掲載)<br>A: 消化管壁の模式図<br>B:横断図]]
 腸管神経系は食道から肛門に及ぶ消化管と膵臓、胆嚢や胆道系の壁内に存在し、[[神経節]]と神経節間を結ぶ神経線維、および粘膜上皮や小動脈などの効果器へ投射する神経線維から成り立っている(図1)。[[ヒト]]の腸管神経系に存在する神経細胞の数は4億から6億に達し<ref name=ref1 />、他のどの末梢器官に存在する神経細胞の数より多く、脊髄に存在する神経細胞の総数に匹敵する。
 腸管神経節には神経細胞と[[グリア細胞]]が存在し、多くの点で中枢神経系の構造に類似している。しかしながら、腸管神経節には[[結合組織]]性の要素は存在せず、中枢神経系でみられる[[血液脳関門]]のような構造も存在しない<ref name=ref2><pubmed>22392290</pubmed></ref>。
 腸管神経叢に存在する神経線維束には腸管神経系の[[軸索]]と消化管に投射する外来神経の軸索及び[[グリア]]細胞が含まれる。筋層間神経叢と粘膜下神経叢は、形態的・機能的に互いに連絡し、さらに外来神経である副交感神経系([[迷走神経]]や骨盤神経)や交感神経系(血管運動神経など)とも連絡している(図2)。なお、外来神経の中には中枢神経系からの指令を効果器に伝える遠心性神経ばかりでなく、消化管からの情報を中枢神経系に伝える求心性神経も含まれている。
===筋層間神経叢===
[[image:腸管神経系3.png|thumb|300px|'''図3.筋層間神経叢(写真)'''<br>モルモット遠位結腸縦走筋‐筋層間神経叢のホールマウント標本を蛍光免疫染色した。<br>A: 神経性NO 合成酵素(NOS)に対する特異的抗体を一次抗体とした。図中の白線は 500 μm を意味する。<br>B: NOS (緑)と NPY (赤)の二重染色。NOS 陽性神経の細胞体と神経線維、NPY 陽性の神経膨隆部がみられる。図中の白線は 100 μm を意味する。
<ref name=ref3'''>唐木晋一郎、桑原厚和'''<pubmedbr>大腸の腸管神経系 -腸管神経細胞の携帯・機能的分類と神経回路-</pubmedbr>''Foods & Food Ingredients Journal of Japan'', 212(12):1044-1053, 2007.</ref>より引用]]
 筋層間神経叢は輪走筋と縦走筋にはさまれて存在する(図2、3)<ref name=ref3 />。この神経叢は消化管壁内で環状の神経ネットワークを構築すると共に、食道から肛門までの消化管全長にわたる長軸方向にも連続したネットワークを構築している。
==腸管神経系を構成する細胞の分類==
[[image:腸管神経系5.png|thumb|300px|'''図5.S および AH 神経細胞の活動電位'''<br>モルモット小腸筋層間神経叢の神経細胞にガラス微小電極を刺入し、1 nA、200 msの脱分極性の電流パルスを加えた時に発生する活動電位を示したものである。<ref name=ref7><pubmed>566906</pubmed></ref>より引用改変]]
 腸管神経系を構成する神経細胞は、形態的・細胞生理学的特徴と神経に含まれる化学物質や神経の走行経路などの組み合わせにより約20種類に分類される(表1)<ref name=ref1 />。また、腸管神経系には中枢神経系のそれと類似したグリア細胞も存在する。
 腸管神経系は、神経細胞に含まれる化学物質や放出される伝達物質などにより、内在性求心性神経(intrinsic primary afferent neuron; IPAN<ref name=ref4><pubmed>15063530</pubmed></ref>)、介在神経及び運動神経の3種類を同定することができる。興奮性運動神経細胞に含まれる伝達物質はacetylcholine(ACh)やsubstance P(SP)を代表とするタキキニン類、抑制性運動神経に含まれるものはnitric oxide(NO)、vasoactive intestinal polypeptide(VIP)やATPがある。加えて、電気生理学的特性からS(Synaptic)型とAH(After hyperpolarization)型の2つの型に分類される(図5)<ref name=ref5><pubmed>16992436</pubmed></ref> <ref name=ref6><pubmed>6747869</pubmed></ref> <ref name=ref7 />。
{| class="wikitable"
===内在性一次求心性神経===
[[image:腸管神経系6.png|thumb|300px|'''図6.腸管神経細胞の形態学的分類'''<br><ref name=ref13><pubmed>7591994</pubmed></ref>から引用改変]]
 内在性求心性神経はDogiel II型神経に分類され、消化管の機械的・化学的刺激を感知する感覚神経と考えられている。この神経の細胞体は円形あるいは卵円形(13-47 μm)で、筋層間神経叢及び粘膜下神経叢にある神経細胞の約10-15%を占める<ref name=ref8>'''Dogiel A.S.'''<pubmedbr>Ueber den Bau der Ganglien in den Geflechten des Darmes und der Gallenblase des Menschen und der Säugethiere.</pubmedbr>Arch. Anat. Physiol. Leip. Anat. Abt., 130-158, 1899.</ref>。この型の細胞は3~10本の樹状突起と1本の軸索を有していると報告されたが、現在では形態的・機能的研究からすべての突起は軸索であると考えられている<ref name=ref9>'''Stach W.'''<pubmedbr>Zur neuronalen Organisaion des Plexus myentericus (Auerbach) in Schweinedűnndarm. II. Typ II-Neurone.</pubmedbr>Z. Mikrosk. Anat. Forsch., 95(2): 161-182, 1981.</ref> <ref name=ref10><pubmed>10424871</pubmed></ref>(図6)。筋層間神経叢からの内在性一次求心性神経線維は粘膜下神経叢へも側枝を伸ばし、粘膜下神経叢に存在する内在性一次求心性神経と共に粘膜にも投射する。内在性一次求心性神経は後根神経節に存在する外来性一次求心性神経(extrinsic primary afferent neuron)と特性が似ており、SPやcalcitonin gene-related peptide(CGRP)を神経伝達物質とする。また、感覚神経としてばかりでなく、侵害受容器としても機能する<ref name=ref4 />。
 Digiel II型神経は電気生理学的分類におけるAH神経細胞とほぼ一致するので、AH/Type II神経細胞と呼ばれることが多い。AH 神経細胞の“AH”は、後過分極 after-hyperpolarizing の頭文字であり、活動電位の発生後に数秒から数十秒にわたって続く、[[遅い後過分極]]が見られるのが特徴である(図5 AH)。通常、AH神経細胞の活動電位は脱分極刺激に反応して75-110 mVという大きな活動電位を1つしか発生しない<ref name=ref7 />。また、この神経細胞には速い[[興奮性シナプス]]後電位fast excitatory synaptic potential(fast EPSP)は発生せず、細胞体から記録される活動電位は、TTX-感受性のNa+チャネルと非感受性の[[Ca2+チャネル]]を介した内向き電流からなるため、細胞体の活動電位はTTX存在下でも[[CA2|Ca2]]+電流のみで充分発生させることができる。これに対し、軸索から記録される活動電位はTTXにより遮断されるので、TTX感受性のNa+チャネルは軸索での伝導に関与することが考えられる。
===介在神経===
 筋層間神経叢の中で介在神経は口側および肛門側に鎖状にシナプスを作りながら伸びている<ref name=ref11><pubmed>8410075</pubmed></ref> <ref name=ref12><pubmed>7629305</pubmed></ref> <ref name=ref13 />。介在神経も介在神経同士、内在性一次求心性神経や運動神経ともシナプス結合を有している。モルモット小腸では、3種類の下行性介在神経(ACh/NOS, ACh/5-HT及びACh/SOM)<ref name=ref1 />と1種類の上行性介在神経が認められる。モルモット回腸の粘膜下神経叢には、筋層間神経叢に向かって1本の軸索を出すVIP陽性神経が少数存在するが、粘膜や小血管へ側枝を伸ばさないため、両神経叢を結ぶ介在神経と考えられる<ref name=ref14><pubmed>9721907</pubmed></ref>。
===運動神経===
 消化管を構成する粘膜筋板、輪走筋および縦走筋は、[[興奮性]]と[[抑制性]]の神経支配を受けている。これらの運動神経は単一の軸索を持つS型の神経である。S神経細胞の“S”は synaptic の頭文字であり、近傍の神経線維束を電気刺激することによってfast EPSPが観察されることから命名された。S型神経は比較的高い入力抵抗を示し、脱分極刺激を行っている間は活動電位を発生するばかりでなく、20-100 ms程度の短い後過分極を伴う。また、この神経に発生する活動電位はTTXにより抑制されるため、Na+チャネルによるものである(図5S)。さらに、S型神経細胞においてはfast EPSPの加重により活動電位を発生するが、[[slow EPSP]]も記録される。S型神経細胞の形状は様々であるが、全て軸索を1本のみ有する神経細胞でありDogiel II型には分類されない。従って、その機能は運動神経あるいは介在神経と考えられる。
 輪走筋を支配する運動神経の大部分は筋層間神経叢に存在するが、ヒトを含む一部の[[哺乳類]]では粘膜下神経叢由来の神経も輪走筋を支配している。括約筋も含めた消化管の輪走筋を支配する運動神経には興奮性と抑制性の2種類がある。興奮性運動神経はAChやSPなどを、抑制性運動神経は[[NO]]、VIPおよび[[ATP]]などを伝達物質とし<ref name=ref15><pubmed>2454974</pubmed></ref>、縦が13~35 μm、幅は9~22 μmの扁平な形の細胞体から4~20以上の樹状突起と1本の軸索を出すDogiel I型細胞に分類される(図6)。多くのI型神経の軸索は神経節を出て4ないしそれ以上の神経節を経由して輪走筋層に至る。
 多くの小[[動物]]では縦走筋へ投射している運動神経細胞の大部分は筋層間神経叢にあるが、モルモットでは筋層間神経叢にある細胞の約25%が縦走筋を支配している<ref name=ref1 />。しかし、ブタのような大きな動物では、縦走筋を支配する運動神経は一部、粘膜下神経叢にも由来する。 粘膜筋板も興奮性と抑制性の運動神経支配を受けるが、その細胞体は粘膜下神経叢に存在する<ref name=ref16><pubmed>4146742</pubmed></ref> <ref name=ref17><pubmed>6210358</pubmed></ref>。
 粘膜や小動脈に投射している運動神経の細胞体は粘膜下神経叢に存在し<ref name=ref1 />、水分や電解質の輸送制御に関与している。粘膜上皮と消化管壁に存在する細動脈を支配する運動神経にはVIP/PACAPを伝達物質とする非コリン作働性分泌運動/血管拡張神経、カルレチニンを含むコリン作働性分泌運動/血管拡張神経、そしてNeuropeptide Y(NPY)を含むコリン作働性分泌運動神経の3種類あると考えられる<ref name=ref18><pubmed>12740940</pubmed></ref>。VIPおよびその関連ペプチドは粘膜上皮に作用して水の分泌を誘発するが<ref name=ref19><pubmed>8384795</pubmed></ref>、VIP分泌運動神経は多くの哺乳類で小腸、大腸および胆嚢にも広範囲に分布している<ref name=ref20>'''Furness J.B., Llewellyn Smith I.J., Bornstein J.C., Costa M.'''<pubmedbr>Chemical neuroanatomy and the analysis of neuronal circuitry in the enteric nervous system. <br>In Björklund A, Hökfelt T, Owman C (eds) Handbook of Chemical Neuroanatomy: The peripheral nervous system. </pubmedbr>Pp. 161-218, 1988.</ref>。
===グリア細胞===

案内メニュー