9,444
回編集
細編集の要約なし |
細編集の要約なし |
||
9行目: | 9行目: | ||
{{box|text= | {{box|text= | ||
共焦点レーザー顕微鏡は、共焦点光学系を利用しレーザーを光源とした顕微鏡である。焦点が合った面だけの光を選択して像をつくる。そのため、落射蛍光顕微鏡よりもコントラストの強い像が得られる。レーザースポットを標本上にて走らせ(走査:スキャン)、受光部が得た光をデジタル変換して画素をつくり、画面を構成する。一点走査型と多点走査型があり、一点走査型は、スキャンする方法を変えることによりズーム機能や2種の蛍光色素の重複(クロストーク)を最小化するなどさまざまな効果が得られる。多点走査型は多数のレーザースポットを一度に走査することにより高速な画像取得が可能となっている。 | |||
}} | }} | ||
24行目: | 24行目: | ||
[[落射式蛍光顕微鏡]]は[[wikipedia:ja:対物レンズ|対物レンズ]]の焦点面以外からの光(いわゆるボケ像)も検出器に入ってきてしまうのに対し、共焦点光学系は対物レンズの焦点面と共役の位置にピンホールを配置することによって、焦点面以外からの光を除去し、焦点面のみを観察することができる(光学的切片)。 | [[落射式蛍光顕微鏡]]は[[wikipedia:ja:対物レンズ|対物レンズ]]の焦点面以外からの光(いわゆるボケ像)も検出器に入ってきてしまうのに対し、共焦点光学系は対物レンズの焦点面と共役の位置にピンホールを配置することによって、焦点面以外からの光を除去し、焦点面のみを観察することができる(光学的切片)。 | ||
したがってサンプルまたは対物レンズを厚み方向に一定距離ずつ移動させて複数枚の画像を撮ると、そのサンプルの3次元的な[[蛍光物質]] | したがってサンプルまたは対物レンズを厚み方向に一定距離ずつ移動させて複数枚の画像を撮ると、そのサンプルの3次元的な[[蛍光物質]]の分布を観察することができる<ref name=ref1>'''藤田哲也、河田聡'''<br>新しい光学顕微鏡 第一巻 レーザ顕微鏡の理論と実際<br>''学際企画'' 1995 ISBN4-906514-17-0</ref> <ref name=ref2>'''藤田哲也、石川春律、高松哲郎'''<br>新しい光学顕微鏡 第二巻 共焦点レーザ顕微鏡の医学・生物への応用<br>''学際企画'' 1995 ISBN4-906514-18-9 | ||
</ref> <ref name=ref3>'''J. Pawley'''<br>Handbook of Biological Confocal Microscopy, 3rd edition<br>''Plenum Press''(2006)</ref> <ref name=ref4>'''T. Wilson and C. J. R. Sheppard'''<br>Theory and Practice of Scanning Optical Microscopy<br>''Academic Press''(1984) | |||
</ref>。 | |||
===励起光の走査=== | ===励起光の走査=== | ||
[[image:共焦点レーザー顕微鏡3.png|thumb|300px|'''図3.XYに走査(スキャン)する方法の概念図''']] | [[image:共焦点レーザー顕微鏡3.png|thumb|300px|'''図3.XYに走査(スキャン)する方法の概念図''']] | ||
共焦点レーザー顕微鏡は、点状に集光した[[wikipedia:ja:レーザー|レーザー]]励起光(レーザースポット)をサンプル上を移動(これを走査[scan] | 共焦点レーザー顕微鏡は、点状に集光した[[wikipedia:ja:レーザー|レーザー]]励起光(レーザースポット)をサンプル上を移動(これを走査[scan]という)させながらサンプルの蛍光を検出することによって像をつくる。光源にレーザーが採用されている理由は、レーザーが点光源に近いのでサンプルに点状に投影できるという理由による<ref name=ref1 /> <ref name=ref2 /> <ref name=ref3 /> <ref name=ref4 />。 | ||
また、一般に複数の波長の異なるレーザーが搭載され、[[wikipedia:ja:音響光学素子|音響光学素子]]によって波長ごとに高速にレーザーのOn/Offができる。 | |||
*線状の光を走査する方式の共焦点顕微鏡もある。 | *線状の光を走査する方式の共焦点顕微鏡もある。 | ||
41行目: | 45行目: | ||
高速で駆動する[[wikipedia:ja:ガルバノミラー|ガルバノミラー]]を制御して一点のレーザースポットを走査する。 | 高速で駆動する[[wikipedia:ja:ガルバノミラー|ガルバノミラー]]を制御して一点のレーザースポットを走査する。 | ||
検出器には[[wikipedia:ja:光電子増倍管|光電子増倍管]] | 検出器には[[wikipedia:ja:光電子増倍管|光電子増倍管]]を用いる。ガルバノミラーを振りながら光電子増倍管によって光を電気信号に変えてデジタル化し、デジタル化された値を画素として並べて画像を作る<ref name=ref1 /> <ref name=ref2 /> <ref name=ref3 /> <ref name=ref4 />。 | ||
一点走査式の共焦点レーザー顕微鏡は、落射蛍光顕微鏡にはないいくつかの特徴がある。 | 一点走査式の共焦点レーザー顕微鏡は、落射蛍光顕微鏡にはないいくつかの特徴がある。 | ||
49行目: | 53行目: | ||
:'''スキャンによる画像回転機能''':スキャンする方向をX方向またはY方向だけではなく、斜め方向にスキャンすることによってあたかもサンプルが回転したかのように見える機能。画像内でサンプルの向きを調節することができる。 | :'''スキャンによる画像回転機能''':スキャンする方向をX方向またはY方向だけではなく、斜め方向にスキャンすることによってあたかもサンプルが回転したかのように見える機能。画像内でサンプルの向きを調節することができる。 | ||
:'''光刺激機能''' | :'''光刺激機能''':特定の部分のみに光を照射する機能。細胞の一部に光を照射しその後の時間的経過を調べるたり、サンプルの一部分の蛍光を褪色させてその後周囲からの蛍光物質の流入を調べたりすることができる<ref name=ref5><pubmed>26077909</pubmed></ref>。 | ||
:'''シーケンシャルスキャン機能''':2つの波長のレーザーと2つの検出器を電気的に高速で切り替えることができ、2色の蛍光色素を用いている場合に互いの蛍光波長の重複(クロストーク)を最小化することができる。例えば[[GFP]]と[[DsRed]]の2種類の蛍光タンパクを使っている場合、青色レーザーでGFPを励起し、緑色の蛍光波長のみを第1の検出器で検出し、緑色レーザーでDsRedを励起し赤色の波長のみを第2の検出器で検出するという具合に行なう。(落射蛍光顕微鏡とカメラの組み合わせの場合、機械的にフィルターを交換する時間がかかり、共焦点レーザー顕微鏡ほど早く制御できない。) | :'''シーケンシャルスキャン機能''':2つの波長のレーザーと2つの検出器を電気的に高速で切り替えることができ、2色の蛍光色素を用いている場合に互いの蛍光波長の重複(クロストーク)を最小化することができる。例えば[[GFP]]と[[DsRed]]の2種類の蛍光タンパクを使っている場合、青色レーザーでGFPを励起し、緑色の蛍光波長のみを第1の検出器で検出し、緑色レーザーでDsRedを励起し赤色の波長のみを第2の検出器で検出するという具合に行なう。(落射蛍光顕微鏡とカメラの組み合わせの場合、機械的にフィルターを交換する時間がかかり、共焦点レーザー顕微鏡ほど早く制御できない。) | ||
62行目: | 66行目: | ||
多数のピンホールを渦巻状に配置した円板(ニポウディスク)を利用し、励起光をこのピンホールを通してサンプル上に投影することで、多数の点状の励起を同時に行う。1画面上には約1000個の点状投影があり、円板を高速で回転させることで、点が万遍なくサンプルを覆うように移動して走査する。 | 多数のピンホールを渦巻状に配置した円板(ニポウディスク)を利用し、励起光をこのピンホールを通してサンプル上に投影することで、多数の点状の励起を同時に行う。1画面上には約1000個の点状投影があり、円板を高速で回転させることで、点が万遍なくサンプルを覆うように移動して走査する。 | ||
サンプルから発せられた蛍光もピンホールを通り、前後のぼけた像を取り除く。検出器は高感度[[wikipedia:ja:CCDカメラ|CCDカメラ]]または[[wikipedia:ja:CMOSカメラ|CMOSカメラ]] | サンプルから発せられた蛍光もピンホールを通り、前後のぼけた像を取り除く。検出器は高感度[[wikipedia:ja:CCDカメラ|CCDカメラ]]または[[wikipedia:ja:CMOSカメラ|CMOSカメラ]]等の2次元検出器を使用する。1点走査式の共焦点レーザー顕微鏡と違い、落射蛍光顕微鏡と同じように画面内での時間差はほぼ無い。逆に、一点走査式共焦点顕微鏡は、1画素をつくる時間が非常に短い(ナノ秒~マイクロ秒)が、多点走査型は1画素をつくる時間がCCDカメラの露光時間に等しい(通常はミリ秒)<ref name=ref1 /> <ref name=ref2 /> <ref name=ref3 /> <ref name=ref4 />。 | ||
特徴としては、走査速度が非常に速いことである。現在製品として世に出ている多点共焦点顕微鏡では、1秒間に最大2000枚像を取得することができる。実質的には、電子増倍型の高感度CCDを用いての[[培養細胞]] | 特徴としては、走査速度が非常に速いことである。現在製品として世に出ている多点共焦点顕微鏡では、1秒間に最大2000枚像を取得することができる。実質的には、電子増倍型の高感度CCDを用いての[[培養細胞]]などの蛍光画像取得では、1秒間に数百フレームの速度で撮ることができる<ref name=ref6><pubmed>21971847</pubmed></ref>。 | ||
==関連項目== | ==関連項目== |