「モデル動物」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
206行目: 206行目:


==脳機能研究におけるモデル生物の有用性==
==脳機能研究におけるモデル生物の有用性==
 脳神経は、[[感覚]]、[[運動]]、記憶や[[情動]]などの機能を担っているため、そのメカニズム解析には遺伝子や細胞レベルの研究だけでは不十分であり、実際に生体を用いて経時的に考察ができる動物実験が必要不可欠である。
 脳神経細胞は単独では複雑な高次機能を発揮することはできず、個々の神経細胞が軸索を伸ばして他の多くの神経細胞とシナプスを介して結合することによって神経回路を形成し、記憶や[[情動]]などの高次脳機能を担っている。そのため神経回路の機能を解明するには遺伝子や細胞のレベルの研究だけでは不十分であり、実際に生体を用いて経時的に考察ができる動物実験が脳機能の理解のためには欠かすことができない。


 基礎的な研究においては、線虫などの発生上、下位の生物が用いられている。線虫は全ての神経細胞が同定されており、神経発生や個々の神経細胞の機能、神経回路を研究するために有用なモデル動物である。ヤリイカは非常に太い神経線維と巨大なシナプスを持っており神経生理学の分野では非常に有用なモデル動物である。アフリカツメガエルは母体外で発生するため、その発生過程を実体顕微鏡下で直接観察することができる利点を持ち、特に[[神経管]]形成の仕組みを解明するためのモデル動物として古くから用いられている。
 無脊椎動物を用いた神経回路の研究では、全ての神経細胞が同定され神経細胞同士の接続が調べられている線虫、非常に太い神経線維と巨大なシナプスを持っているヤリイカ、母体外で発生するため発生過程を直接観察できるアフリカツメガエル、などが用いられている。


 [[wikipedia:ja:鳥類|鳥類]]は鳴くことで音声コミュニケーションをとっていると考えられており、その中でもキンカチョウはよく利用されている。幼鳥は親鳥の鳴き声から学習し、また発声練習をしてさえずりを学習する。音声コミュニケーションでの社会性行動やさえずりの学習能力に関するモデル動物として有用であると考えられている。
 [[wikipedia:ja:鳥類|鳥類]]は鳴くことで音声コミュニケーションをとっていると考えられており、その中でもキンカチョウは、幼鳥は親鳥の鳴き声をもとに発声練習をしてさえずりを学習することが調べられており、音声コミュニケーションでの社会性行動やさえずりの学習能力に関するモデル動物として有用であると考えられている。


 [[長期増強]]など脳神経に直接処置を加えそれに対する影響や反応を観察する電気生理学的実験や記憶や情動などの高次脳機能や運動機能を調べる行動学的実験などでは、マウス、ラット、マカク属サルなどの実験動物が有用である。特にマウスやラットでは行動解析実験の実験方法や実験機器等が確立されているものが多くあり、実際に動物の行動を観察することで、脳機能に関する様々な情報を得ることが可能である。行動解析実験機器としては、学習・記憶能力を調べる[[モーリス水迷路]][[バーンズ円形迷路]]や[[恐怖条件づけ]]実験装置、[[運動協調性]]を調べる[[ローターロッド]]試験、[[不安様行動]]を調べる[[高架式十字迷路]]や[[明暗往来実験]]装置、[[鬱病]]様行動を評価する[[強制水泳]]実験装置や[[テールサスペンションテスト]]装置、[[総合失調症]]を評価する[[プレパルスインヒビション]]テスト装置、概日リズムの評価を行う[[回転かご走行試験]]装置などがある。
 脳神経に直接処置を加えて調べる[[長期増強]]などの電気生理学的実験や記憶や情動などの高次脳機能や運動機能を調べる行動学的実験などでは、マウス、ラット、マカク属サルなどがよく用いられている。特に遺伝操作ができるマウスでは行動解析実験の実験方法や実験機器等が確立されているものが多くあり、実際に動物の行動を観察することで、脳機能に関する様々な情報を得ることが可能である。行動解析実験機器としては、学習・記憶能力を調べる[[モーリス水迷]]路、[[バーンズ円形迷路]]や[[恐怖条件づけ]]実験装置、[[運動協調性]]を調べる[[ローターロッド]]試験、[[不安様行動]]を調べる[[高架式十字迷路]]や[[明暗往来実験]]装置、[[鬱病]]様行動を評価する[[強制水泳]]実験装置や[[テールサスペンションテスト]]装置、[[総合失調症]]を評価する[[プレパルスインヒビション]]テスト装置、概日リズムの評価を行う[[回転かご走行試験]]装置などがある。  


 ヒトの病気に類似した疾患を呈する実験動物は疾患モデル動物とよばれる。疾患モデル動物の原因遺伝子の特定とその機能解析は、疾患モデル動物の有用性に大きく関わる。疾患モデル動物への遺伝学的アプローチ法には、[[フォワードジェネティクス]]([[順行性遺伝学]])と[[リバースジェネティクス]]([[逆行性遺伝学]])のふたつの方法がある。
 ヒトの病気に類似した疾患を呈する実験動物は疾患モデル動物とよばれる。疾患モデル動物の原因遺伝子の特定とその機能解析は、疾患モデル動物の有用性に大きく関わる。疾患モデル動物への遺伝学的アプローチ法には、[[フォワードジェネティクス]]([[順行性遺伝学]])と[[リバースジェネティクス]]([[逆行性遺伝学]])のふたつの方法がある。
221行目: 221行目:
:遺伝子より表現型を調べる方法。特定の遺伝子に注目し、トランスジェニックマウスやノックアウトマウスを作成し、その病態や症状などを調べることで、その遺伝子の機能を調べる。 
:遺伝子より表現型を調べる方法。特定の遺伝子に注目し、トランスジェニックマウスやノックアウトマウスを作成し、その病態や症状などを調べることで、その遺伝子の機能を調べる。 


 順行性遺伝学と逆行性遺伝学は、表現型から始めるか、遺伝子から始めるか、の違いであるが、ある疾患モデルマウスの発現型から特定された遺伝子を改変したマウスを作製しその発現型が一致するかどうか検討を行うなど相互的な実験が有用である。
 順行性遺伝学と逆行性遺伝学は、表現型から始めるか、遺伝子から始めるか、の違いであるが、ある疾患モデルマウスの発現型から特定された遺伝子を改変したマウスを作製し、その発現型が一致するかどうか検討を行うなど相互的な実験が有用である。


 現在までにヒトの[[アルツハイマー病]]を反映したアルツハイマー病モデルマウス<ref name=ref6><pubmed>24728269</pubmed></ref>など、様々な疾病に対する疾患モデル動物が作製され、今後も詳細な病態メカニズムの解析、検査方法や治療法の開発のために利用されていくことが期待される。その一方でヒト特異的疾患を対象とした場合、マウスなどではその生理・代謝機能が必ずしもヒトを忠実に反映していない部分もあり、ヒトへの外挿面で十分な効果を得られないことも多く知られており、考察には注意が必要である。
 現在までに様々な疾病に対する疾患モデル動物が作製されている。例えば神経精神疾患モデルとしては以下のようなモデル動物がある。
 
神経疾患モデル
*ショウジョウバエの眼筋咽頭型筋ジストロフィモデル<ref name=ref047><pubmed>    16642034</pubmed></ref>
*ショウジョウバエとゼブラフィッシュの筋ジストロフィモデル<ref name=ref048><pubmed>    25859781</pubmed></ref>
*マウスのヒトアルツハイマー病を反映したアルツハイマー病モデル<ref name=ref049><pubmed>24728269</pubmed></ref>
 
精神疾患モデル
*ショウジョウバエの脆弱X症候群モデル<ref name=ref050><pubmed>12176363</pubmed></ref>
*マウスの鬱病と総合失調症モデル<ref name=ref051><pubmed>17481393</pubmed></ref>
 
 今後も詳細な病態メカニズムの解析、検査方法や治療法の開発のために利用されていくことが期待される。 その一方でヒト特異的疾患を対象とした場合、マウスなどではその生理・代謝機能が必ずしもヒトを忠実に反映していない部分もあり、ヒトへの外挿面で十分な効果を得られないことも多く知られており、考察には注意が必要である。


==関連項目==
==関連項目==

案内メニュー