「Gタンパク質共役型受容体」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
4行目: 4行目:
代謝活性型受容体とは真核細胞の細胞質膜上もしくは、細胞内部の構成膜上に存在する受容体の一種。神経伝達物質と結合し細胞内に情報伝達を引き起こす受容体には、大きく分けてイオンを直接透過させるイオンチャネル型受容体と代謝活性型受容体の二つがある。ここでは代謝活性型受容体のうち三量体Gタンパク質と共役し細胞内に情報を伝達するGタンパク質共役型受容体(GPCR)に焦点を絞り説明する。
代謝活性型受容体とは真核細胞の細胞質膜上もしくは、細胞内部の構成膜上に存在する受容体の一種。神経伝達物質と結合し細胞内に情報伝達を引き起こす受容体には、大きく分けてイオンを直接透過させるイオンチャネル型受容体と代謝活性型受容体の二つがある。ここでは代謝活性型受容体のうち三量体Gタンパク質と共役し細胞内に情報を伝達するGタンパク質共役型受容体(GPCR)に焦点を絞り説明する。


[[ファイル:naokoadachi_Fig_1.jpg|500px|thumb|right|GPCRの構造と翻訳後修飾]]
[[ファイル:naokoadachi_Fig_1.jpg|500px|thumb|right|GPCRの構造と翻訳後修飾(クラスA)]]
==Gタンパク質共役型受容体==
==Gタンパク質共役型受容体==
GPCRは別名7回膜貫通型受容体と言われるように、7つのαへリックス構造が細胞質膜を貫通し、N末端は細胞外にC末端領域は細胞内に位置する。細胞外からの様々なシグナル(神経伝達物質、ホルモン、化学物質、光等)を受容すると、GPCRは構造変化を起こし、細胞質側に結合している三量体Gタンパク質に対してグアニンヌクレオチド交換因子(GEF)として働く。GDP型からGTP型へと変換されたGタンパク質は、つづいて効果器の活性を変化させることで、細胞外シグナルが細胞内へと伝達される。現在使用されている薬剤のおよそ40%がGPCRを標的としており、GPCRの機構解明に大きく貢献した Brian K. Kobilka と Robert J. Lefkowitz が2012年にノーベル化学賞を共同受賞した<ref><pubmed> 23412332 </pubmed></ref>。
GPCRは別名7回膜貫通型受容体と言われるように、7つのαへリックス構造が細胞質膜を貫通し、N末端は細胞外にC末端領域は細胞内に位置する。細胞外からの様々なシグナル(神経伝達物質、ホルモン、化学物質、光等)を受容すると、GPCRは構造変化を起こし、細胞質側に結合している三量体Gタンパク質に対してグアニンヌクレオチド交換因子(GEF)として働く。GDP型からGTP型へと変換されたGタンパク質は、つづいて効果器の活性を変化させることで、細胞外シグナルが細胞内へと伝達される。現在使用されている薬剤のおよそ40%がGPCRを標的としており、GPCRの機構解明に大きく貢献した Brian K. Kobilka と Robert J. Lefkowitz が2012年にノーベル化学賞を共同受賞した<ref><pubmed> 23412332 </pubmed></ref>。
28行目: 28行目:
多くのGPCRでは7番目の膜貫通領域直近のC末端側領域に存在する保存されたシステイン残基がS-ルミトイル化修飾を受ける。S-パルミトイル化修飾とは飽和脂肪酸であるパルミチン酸( C<sub>16</sub>H<sub>32</sub>O<sub>2</sub>)がシステイン残基のチオール基にチオエステル結合で付加される可逆的な修飾で細胞質側に存在するDHHCタンパク質ファミリーを介する<ref><pubmed> 20168314 </pubmed></ref>。多くはC末端領域に1~3個のパルミトイル化修飾が見つかっておりパルミトイル化されたC末端領域は新たな細胞内ループを形成する。パルミトイル化修飾によるGPCRの機能調節は多岐に渡り各受容体によって異なるが、受容体の成熟、細胞質膜へ発現や輸送、Gタンパク質との結合への影響、脱感作やインターナリゼーションに関与することが報告されている<ref><pubmed> 19131499 </pubmed></ref>。
多くのGPCRでは7番目の膜貫通領域直近のC末端側領域に存在する保存されたシステイン残基がS-ルミトイル化修飾を受ける。S-パルミトイル化修飾とは飽和脂肪酸であるパルミチン酸( C<sub>16</sub>H<sub>32</sub>O<sub>2</sub>)がシステイン残基のチオール基にチオエステル結合で付加される可逆的な修飾で細胞質側に存在するDHHCタンパク質ファミリーを介する<ref><pubmed> 20168314 </pubmed></ref>。多くはC末端領域に1~3個のパルミトイル化修飾が見つかっておりパルミトイル化されたC末端領域は新たな細胞内ループを形成する。パルミトイル化修飾によるGPCRの機能調節は多岐に渡り各受容体によって異なるが、受容体の成熟、細胞質膜へ発現や輸送、Gタンパク質との結合への影響、脱感作やインターナリゼーションに関与することが報告されている<ref><pubmed> 19131499 </pubmed></ref>。
===== * リン酸化 =====
===== * リン酸化 =====
多くのGPCRは細胞内ループと細胞質側に位置するC末端側領域にリン酸化修飾を受けるセリン、トレオニン、チロシン残基を持つ。リガンドと結合した受容体はGタンパク質または、他の結合タンパク質を介して下流にシグナルを伝達し、活性化したタンパク質リン酸化酵素(タンパク質リン酸化酵素A;PKA、タンパク質リン酸化酵素C;PKC、Gタンパク質共役型受容体キナーゼ;GRK等)によりリン酸化修飾される。一般的にリン酸化された受容体は構造変化、もしくは、βアレスチンと結合することでGタンパク質との結合を阻害されGタンパク質を介したシグナルは収束し脱感作する。また、βアレスチンと結合した受容体はクラスリンと結合しエンドサイト―シスによって細胞質膜上より取り除かれる。一つの受容体は、通常複数のリン酸化酵素によって複数の部位にリン酸化修飾を受け、これはリガンドの種類や活性化時間、組織・細胞種によっても大きく異なる。リン酸化修飾を介した受容体の機能調節は多岐に渡り、一か所のリン酸化修飾ではその調節機能の説明が難しく、リン酸化修飾パターンを「バーコード」として認識するモデルが提唱されている<ref><pubmed> 21868357 </pubmed></ref><ref><pubmed> 21177246 </pubmed></ref>。
多くのGPCRは細胞内ループと細胞質側に位置するC末端側領域にリン酸化修飾を受けるセリン、トレオニン残基を持つ。リガンドと結合した受容体はGタンパク質または、他の結合タンパク質を介して下流にシグナルを伝達し、活性化したタンパク質リン酸化酵素(タンパク質リン酸化酵素A;PKA、タンパク質リン酸化酵素C;PKC、Gタンパク質共役型受容体キナーゼ;GRK等)によりリン酸化修飾される。一般的にリン酸化された受容体は構造変化、もしくは、βアレスチンと結合することでGタンパク質との結合を阻害されGタンパク質を介したシグナルは収束し脱感作する。また、βアレスチンと結合した受容体はクラスリンと結合しエンドサイト―シスによって細胞質膜上より取り除かれる。一つの受容体は、通常複数のリン酸化酵素によって複数の部位にリン酸化修飾を受け、これはリガンドの種類や活性化時間、組織・細胞種によっても大きく異なる。リン酸化修飾を介した受容体の機能調節は多岐に渡り、一か所のリン酸化修飾ではその調節機能の説明が難しく、リン酸化修飾パターンを「バーコード」として認識するモデルが提唱されている<ref><pubmed> 21868357 </pubmed></ref><ref><pubmed> 21177246 </pubmed></ref>。
===== * その他 =====
===== * その他 =====
その他にもGPCRは多彩な翻訳後修飾が報告されており、ユビキチン化による受容体の分解や細胞内輸送、SUMO化による受容体の安定性の向上等がある。
その他にもGPCRは多彩な翻訳後修飾が報告されており、ユビキチン化による受容体の分解や細胞内輸送、SUMO化による受容体の安定性の向上等がある。
66行目: 66行目:
G<sub>βγ</sub>と結合したG<sub>α</sub>はGDPとの親和性が上がることから、G<sub>βγ</sub>の第一の機能はG<sub>αβγ</sub>三量体を不活性状態に保つことだと考えられる。一方で、G<sub>αi/o</sub>と共役するGPCRではG<sub>βγ</sub>のシグナル伝達が重要となる。G<sub>i/o</sub>はG<sub>s</sub>やG<sub>q</sub>と比較して細胞内に高濃度で存在するため、G<sub>αi/o</sub>共役型GPCRが活性化すると放出されるG<sub>βγ</sub>の量は多くなる。G<sub>βγ</sub>はG<sub>αi/o</sub>共役型GPCRの下流でGタンパク質活性化カリウム(GIRK)チャネルやP/Q型とN型の電位依存性カルシウムチャネル、さらにはホスホリパーゼC、PI<sub>3</sub>キナーゼなどを活性化することが知られている。
G<sub>βγ</sub>と結合したG<sub>α</sub>はGDPとの親和性が上がることから、G<sub>βγ</sub>の第一の機能はG<sub>αβγ</sub>三量体を不活性状態に保つことだと考えられる。一方で、G<sub>αi/o</sub>と共役するGPCRではG<sub>βγ</sub>のシグナル伝達が重要となる。G<sub>i/o</sub>はG<sub>s</sub>やG<sub>q</sub>と比較して細胞内に高濃度で存在するため、G<sub>αi/o</sub>共役型GPCRが活性化すると放出されるG<sub>βγ</sub>の量は多くなる。G<sub>βγ</sub>はG<sub>αi/o</sub>共役型GPCRの下流でGタンパク質活性化カリウム(GIRK)チャネルやP/Q型とN型の電位依存性カルシウムチャネル、さらにはホスホリパーゼC、PI<sub>3</sub>キナーゼなどを活性化することが知られている。
==== Gタンパク質非依存的シグナリング ====
==== Gタンパク質非依存的シグナリング ====
リガンド刺激により活性化し細胞内領域をリン酸化された受容体は、βアレスチン1/2と結合することで1)Gタンパク質シグナルが収束し、2)エンドサイト―シスにより細胞外リガンドのアクセスを阻害する。一般的にはこの状態を脱感作というが、細胞内小胞に乗った受容体はβアレスチンを介して下流にシグナルを伝達する。
== 関連項目 ==
== 関連項目 ==
*[[ロドプシン]]
*[[ロドプシン]]
76

回編集

案内メニュー