「Gタンパク質共役型受容体」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
11行目: 11行目:


{{box|text=
{{box|text=
 代謝活性型受容体とは真核細胞の細胞質膜上もしくは、細胞内部の構成膜上に存在する受容体の一種。神経伝達物質と結合し細胞内に情報伝達を引き起こす受容体には、大きく分けてイオンを直接透過させるイオンチャネル型受容体と代謝活性型受容体の二つがある。ここでは代謝活性型受容体のうち三量体Gタンパク質と共役し細胞内に情報を伝達するGタンパク質共役型受容体(GPCR)に焦点を絞り説明する。
 GPCRは別名7回膜貫通型受容体と言われるように、7つのαへリックス構造が細胞質膜を貫通し、N末端は細胞外にC末端領域は細胞内に位置する。細胞外からの様々なシグナル([[神経伝達物質]]、[[ホルモン]]、化学物質、光等)を受容すると、GPCRは構造変化を起こし、細胞質側に結合している[[三量体Gタンパク質]]に対して[[グアニンヌクレオチド交換因子]](GEF)として働く。
 GPCRは別名7回膜貫通型受容体と言われるように、7つのαへリックス構造が細胞質膜を貫通し、N末端は細胞外にC末端領域は細胞内に位置する。細胞外からの様々なシグナル([[神経伝達物質]]、[[ホルモン]]、化学物質、光等)を受容すると、GPCRは構造変化を起こし、細胞質側に結合している[[三量体Gタンパク質]]に対して[[グアニンヌクレオチド交換因子]](GEF)として働く。


21行目: 23行目:
 ヒトでは800種以上のGPCRが見つかっており、その半数は感覚(嗅覚、味覚、視覚、フェロモン)に対する受容体である。残りの半数の内、3分の2はその他の様々な生理機能(神経系、内分泌系)に関与し、3分の1は生理的なリガンドが不明もしくは機能不明なオーファン受容体(orphan receptor)である<ref><pubmed> 26582914 </pubmed></ref>。これまでに様々な方法で分類が試みられているが、ここでは代表的なクラスの概要を説明する。
 ヒトでは800種以上のGPCRが見つかっており、その半数は感覚(嗅覚、味覚、視覚、フェロモン)に対する受容体である。残りの半数の内、3分の2はその他の様々な生理機能(神経系、内分泌系)に関与し、3分の1は生理的なリガンドが不明もしくは機能不明なオーファン受容体(orphan receptor)である<ref><pubmed> 26582914 </pubmed></ref>。これまでに様々な方法で分類が試みられているが、ここでは代表的なクラスの概要を説明する。


==== クラス A: ロドプシン様受容体 ====
=== クラス A: ロドプシン様受容体 ===
 N末端の細胞外領域が比較的短く、複数個の膜貫通領域によってリガンド結合部位が形成される。全GPCRの85%を占める古典的なGPCRであり、ロドプシン、アドレナリン受容体、ムスカリン性アセチルコリン受容体、嗅覚受容体などを含む。クラスA受容体はさらにリガンドの種類によってA1-A19のサブグループに分けられている。
 N末端の細胞外領域が比較的短く、複数個の膜貫通領域によってリガンド結合部位が形成される。全GPCRの85%を占める古典的なGPCRであり、ロドプシン、アドレナリン受容体、ムスカリン性アセチルコリン受容体、嗅覚受容体などを含む。クラスA受容体はさらにリガンドの種類によってA1-A19のサブグループに分けられている。


 クラス A のGPCRに保存されているアミノ酸配列として3つ目の膜貫通領域の細胞質側に位置するE/DRY(Asp/Glu, Arg, Tyr)モチーフがある。ロドプシンの結晶構造解析により、E/DRYモチーフのアルギニン(塩基性アミノ酸)は6番目の膜貫通領域の細胞質側に位置する保存された酸性アミノ酸(グルタミン酸/アスパラギン酸)と非共有結合(イオンロック;ionic lock)を作り、不活性型の構造を取ることが報告されている。これらの受容体ではE/DRYモチーフに変異を加えると恒常的に活性化状態を示す。一方で、恒常的活性化状態をとらない受容体も存在し、リガンド結合の変化、Gタンパク質シグナルの変化等を示す受容体も存在するが、E/DRYモチーフが受容体の機能に需要なのには変わりない<ref><pubmed> 12627940 </pubmed></ref><ref><pubmed> 17192495 </pubmed></ref>。
 クラス A のGPCRに保存されているアミノ酸配列として3つ目の膜貫通領域の細胞質側に位置するE/DRY(Asp/Glu, Arg, Tyr)モチーフがある。ロドプシンの結晶構造解析により、E/DRYモチーフのアルギニン(塩基性アミノ酸)は6番目の膜貫通領域の細胞質側に位置する保存された酸性アミノ酸(グルタミン酸/アスパラギン酸)と非共有結合(イオンロック;ionic lock)を作り、不活性型の構造を取ることが報告されている。これらの受容体ではE/DRYモチーフに変異を加えると恒常的に活性化状態を示す。一方で、恒常的活性化状態をとらない受容体も存在し、リガンド結合の変化、Gタンパク質シグナルの変化等を示す受容体も存在するが、E/DRYモチーフが受容体の機能に需要なのには変わりない<ref><pubmed> 12627940 </pubmed></ref><ref><pubmed> 17192495 </pubmed></ref>。


==== クラス B:  セクレチン様受容体 ====
=== クラス B:  セクレチン様受容体 ===
 N末端側の細胞外領域が長くリガンド結合部位を形成する。セクレチン様とAdhesion型GPCRの2つのサブグループに分けられる。セクレチン様受容体にはセクレチン、グルカゴン、グルカゴン様ペプチド(GLP)、カルシトニン、副甲状腺ホルモン等のペプチドホルモンに結合する受容体がある。一方で、Adhesion型GPCRは巨大なN末端部位に様々なドメイン構造を持ち細胞外マトリックスとの相互作用が示唆されているが、その多くはリガンドが不明である<ref><pubmed> 23863939 </pubmed></ref>。
 N末端側の細胞外領域が長くリガンド結合部位を形成する。セクレチン様とAdhesion型GPCRの2つのサブグループに分けられる。セクレチン様受容体にはセクレチン、グルカゴン、グルカゴン様ペプチド(GLP)、カルシトニン、副甲状腺ホルモン等のペプチドホルモンに結合する受容体がある。一方で、Adhesion型GPCRは巨大なN末端部位に様々なドメイン構造を持ち細胞外マトリックスとの相互作用が示唆されているが、その多くはリガンドが不明である<ref><pubmed> 23863939 </pubmed></ref>。


==== クラス C:  代謝型グルタミン酸受容体 ====
=== クラス C:  代謝型グルタミン酸受容体 ===
 代謝型グルタミン酸受容体の他に、GABA<sub>B</sub>受容体、カルシウム感知受容体、味覚受容体がこのクラスに含まれる。N末端側の細胞外領域にVenus flytrap(VFT)ドメインを持ち<ref><pubmed> 10224098 </pubmed></ref>、さらに、GABA<sub>B</sub>受容体以外はシステインリッチ(CRD)ドメイン構造を持つ<ref><pubmed> 24305054 </pubmed></ref>。細胞外領域に結合する生理的リガンド(orthosteric ligand)に加えて、膜貫通領域部位に結合し受容体の活性状態を変化させるアロステリックリガンド(allosteric ligand)を持つ受容体も報告されている<ref><pubmed> 23903222 </pubmed></ref>。
 代謝型グルタミン酸受容体の他に、GABA<sub>B</sub>受容体、カルシウム感知受容体、味覚受容体がこのクラスに含まれる。N末端側の細胞外領域にVenus flytrap(VFT)ドメインを持ち<ref><pubmed> 10224098 </pubmed></ref>、さらに、GABA<sub>B</sub>受容体以外はシステインリッチ(CRD)ドメイン構造を持つ<ref><pubmed> 24305054 </pubmed></ref>。細胞外領域に結合する生理的リガンド(orthosteric ligand)に加えて、膜貫通領域部位に結合し受容体の活性状態を変化させるアロステリックリガンド(allosteric ligand)を持つ受容体も報告されている<ref><pubmed> 23903222 </pubmed></ref>。


==== クラス F: Frizzled/Smoothened ====
=== クラス F: Frizzled/Smoothened ===
 Wntシグナルを活性化するFrizzledとヘッジホッグシグナルを活性化するSmoothenedが含まれる。
 Wntシグナルを活性化するFrizzledとヘッジホッグシグナルを活性化するSmoothenedが含まれる。


38行目: 40行目:
 GPCRは細胞質膜を貫通する7つのαへリックス構造をもち、N末端側が細胞外にC末端側が細胞内に存在し、3つの細胞外ループ(Extracellular loop; ECL1/2/3)と3つの細胞内ループ(Intracellular loop; ICL1/2/3)を持つ。数多くの翻訳後修飾によるGPCRの機能調節が報告されており、以下に代表的なものをあげる。ただし、800種以上あるGPCRの中には例外も存在する。
 GPCRは細胞質膜を貫通する7つのαへリックス構造をもち、N末端側が細胞外にC末端側が細胞内に存在し、3つの細胞外ループ(Extracellular loop; ECL1/2/3)と3つの細胞内ループ(Intracellular loop; ICL1/2/3)を持つ。数多くの翻訳後修飾によるGPCRの機能調節が報告されており、以下に代表的なものをあげる。ただし、800種以上あるGPCRの中には例外も存在する。


==== 糖鎖修飾 ====
=== 糖鎖修飾 ===
 多くのGPCRのN末端領域と細胞外ループは糖鎖修飾を受ける。最もよく知られているのがN型グリコシル化で受容体タンパク質の合成過程において粗面小胞体でオリゴ糖トランスフェラーゼによって付加される。N型グリコシル化のコンセンサス配列はAsn-X-Ser/Thr(XはPro以外のアミノ酸)であり、アスパラギン(Asn)に修飾を受ける<ref><pubmed> 6847620 </pubmed></ref>。多くのクラスAのGPCRでは1~複数個の、クラスB及びクラスCのGPCRではそれより多くの糖鎖修飾付加が報告されており<ref><pubmed> 10465525 </pubmed></ref><ref><pubmed> 25981296 </pubmed></ref>、細胞質膜上への発現や輸送、リガンドとの結合、Gタンパク質との結合<ref><pubmed> 26100877 </pubmed></ref>等への影響が報告されている。
 多くのGPCRのN末端領域と細胞外ループは糖鎖修飾を受ける。最もよく知られているのがN型グリコシル化で受容体タンパク質の合成過程において粗面小胞体でオリゴ糖トランスフェラーゼによって付加される。N型グリコシル化のコンセンサス配列はAsn-X-Ser/Thr(XはPro以外のアミノ酸)であり、アスパラギン(Asn)に修飾を受ける<ref><pubmed> 6847620 </pubmed></ref>。多くのクラスAのGPCRでは1~複数個の、クラスB及びクラスCのGPCRではそれより多くの糖鎖修飾付加が報告されており<ref><pubmed> 10465525 </pubmed></ref><ref><pubmed> 25981296 </pubmed></ref>、細胞質膜上への発現や輸送、リガンドとの結合、Gタンパク質との結合<ref><pubmed> 26100877 </pubmed></ref>等への影響が報告されている。


==== ジスルフィド結合 ====
=== ジスルフィド結合 ===
 クラスAのGPCRではN末端細胞外領域と細胞外ループに、クラスBやクラスCでは細胞外領域のドメイン内部において2つのシステイン残基間の共有結合(S-S結合)が複数存在する。ジスルフィド結合は小胞体でタンパク質ジスルフィドイソメラーゼを介して行われ、受容体の構造の安定化、細胞外ドメインの形成、リガンドの結合等に関与する<ref><pubmed> 25981296 </pubmed></ref>。
 クラスAのGPCRではN末端細胞外領域と細胞外ループに、クラスBやクラスCでは細胞外領域のドメイン内部において2つのシステイン残基間の共有結合(S-S結合)が複数存在する。ジスルフィド結合は小胞体でタンパク質ジスルフィドイソメラーゼを介して行われ、受容体の構造の安定化、細胞外ドメインの形成、リガンドの結合等に関与する<ref><pubmed> 25981296 </pubmed></ref>。


==== パルミトイル化 ====
=== パルミトイル化 ===
 多くのGPCRでは7番目の膜貫通領域直近のC末端側領域に存在する保存されたシステイン残基がS-パルミトイル化修飾を受ける。S-パルミトイル化修飾とは飽和脂肪酸であるパルミチン酸( C<sub>16</sub>H<sub>32</sub>O<sub>2</sub>)がシステイン残基のチオール基にチオエステル結合で付加される可逆的な修飾であり、細胞質側に存在するDHHCタンパク質ファミリーを介する<ref><pubmed> 20168314 </pubmed></ref>。多くはC末端領域に1~3個のパルミトイル化修飾が見つかっておりパルミトイル化されたC末端領域は新たな細胞内ループを形成する。パルミトイル化修飾によるGPCRの機能調節は多岐に渡り、各受容体によって異なるが、受容体の成熟、細胞質膜へ発現や輸送、Gタンパク質との結合への影響、脱感作やインターナリゼーションに関与することが報告されている<ref><pubmed> 19131499 </pubmed></ref>。
 多くのGPCRでは7番目の膜貫通領域直近のC末端側領域に存在する保存されたシステイン残基がS-パルミトイル化修飾を受ける。S-パルミトイル化修飾とは飽和脂肪酸であるパルミチン酸( C<sub>16</sub>H<sub>32</sub>O<sub>2</sub>)がシステイン残基のチオール基にチオエステル結合で付加される可逆的な修飾であり、細胞質側に存在するDHHCタンパク質ファミリーを介する<ref><pubmed> 20168314 </pubmed></ref>。多くはC末端領域に1~3個のパルミトイル化修飾が見つかっておりパルミトイル化されたC末端領域は新たな細胞内ループを形成する。パルミトイル化修飾によるGPCRの機能調節は多岐に渡り、各受容体によって異なるが、受容体の成熟、細胞質膜へ発現や輸送、Gタンパク質との結合への影響、脱感作やインターナリゼーションに関与することが報告されている<ref><pubmed> 19131499 </pubmed></ref>。


===== リン酸化 =====
=== リン酸化 ===
 多くのGPCRは細胞内ループと細胞質側に位置するC末端側領域にリン酸化修飾を受けるセリン、トレオニン残基を持つ。リガンドと結合した受容体はGタンパク質または、他の結合タンパク質を介して下流にシグナルを伝達し、活性化したタンパク質リン酸化酵素(タンパク質リン酸化酵素A;PKA、タンパク質リン酸化酵素C;PKC、Gタンパク質共役型受容体キナーゼ;GRK等)によりリン酸化修飾される。一般的にリン酸化された受容体は構造変化、もしくは、βアレスチンと結合することでGタンパク質との結合を阻害されGタンパク質を介したシグナルは収束し脱感作する。また、βアレスチンと結合した受容体はクラスリンと結合しエンドサイト―シスによって細胞質膜上より取り除かれる。一つの受容体は、通常複数のリン酸化酵素によって複数の部位にリン酸化修飾を受け、これはリガンドの種類や活性化時間、組織・細胞種によっても大きく異なる。リン酸化修飾を介した受容体の機能調節は多岐に渡り、一か所のリン酸化修飾ではその調節機能の説明が難しく、リン酸化修飾パターンを「バーコード」として認識するモデルが提唱されている<ref><pubmed> 21868357 </pubmed></ref><ref><pubmed> 21177246 </pubmed></ref>。
 多くのGPCRは細胞内ループと細胞質側に位置するC末端側領域にリン酸化修飾を受けるセリン、トレオニン残基を持つ。リガンドと結合した受容体はGタンパク質または、他の結合タンパク質を介して下流にシグナルを伝達し、活性化したタンパク質リン酸化酵素(タンパク質リン酸化酵素A;PKA、タンパク質リン酸化酵素C;PKC、Gタンパク質共役型受容体キナーゼ;GRK等)によりリン酸化修飾される。一般的にリン酸化された受容体は構造変化、もしくは、βアレスチンと結合することでGタンパク質との結合を阻害されGタンパク質を介したシグナルは収束し脱感作する。また、βアレスチンと結合した受容体はクラスリンと結合しエンドサイト―シスによって細胞質膜上より取り除かれる。一つの受容体は、通常複数のリン酸化酵素によって複数の部位にリン酸化修飾を受け、これはリガンドの種類や活性化時間、組織・細胞種によっても大きく異なる。リン酸化修飾を介した受容体の機能調節は多岐に渡り、一か所のリン酸化修飾ではその調節機能の説明が難しく、リン酸化修飾パターンを「バーコード」として認識するモデルが提唱されている<ref><pubmed> 21868357 </pubmed></ref><ref><pubmed> 21177246 </pubmed></ref>。


===== その他 =====
=== その他 ====
 その他にもGPCRは多彩な翻訳後修飾が報告されており、ユビキチン化による受容体の分解や細胞内輸送、SUMO化による受容体の安定性の向上等がある。
 その他にもGPCRは多彩な翻訳後修飾が報告されており、ユビキチン化による受容体の分解や細胞内輸送、SUMO化による受容体の安定性の向上等がある。


=== GPCRシグナル経路 ===
== GPCRシグナル経路 ==
==== Gタンパク質シグナリング ====
=== Gタンパク質シグナリング ===
 GPCRに共役しているGタンパク質はα、β、γの三つのサブユニットの複合体であり、βとγサブユニットは常に複合体で挙動する。GPCRが不活性状態であるとき、Gタンパク質は三量体G<sub>αγβ</sub>として存在しG<sub>α</sub>はGDPと結合しており不活性型をとる。GPCRにリガンドが結合し活性化すると、G<sub>α</sub>はGDPをより高濃度に存在するGTPへ交換し、さらにG<sub>βγ</sub>から解離し活性型となる。解離したG<sub>α</sub>とG<sub>βγ</sub>はそれぞれの効果器にシグナルを伝える。G<sub>α</sub>はGTPアーゼ活性を持つため結合したGTPは時間経過と共にGDPに加水分解される。GDP型G<sub>α</sub>はG<sub>βγ</sub>と再結合し不活性状態三量体G<sub>αγβ</sub>へと戻る。
 GPCRに共役しているGタンパク質はα、β、γの三つのサブユニットの複合体であり、βとγサブユニットは常に複合体で挙動する。GPCRが不活性状態であるとき、Gタンパク質は三量体G<sub>αγβ</sub>として存在しG<sub>α</sub>はGDPと結合しており不活性型をとる。GPCRにリガンドが結合し活性化すると、G<sub>α</sub>はGDPをより高濃度に存在するGTPへ交換し、さらにG<sub>βγ</sub>から解離し活性型となる。解離したG<sub>α</sub>とG<sub>βγ</sub>はそれぞれの効果器にシグナルを伝える。G<sub>α</sub>はGTPアーゼ活性を持つため結合したGTPは時間経過と共にGDPに加水分解される。GDP型G<sub>α</sub>はG<sub>βγ</sub>と再結合し不活性状態三量体G<sub>αγβ</sub>へと戻る。


===== G<sub>α</sub>シグナリング =====
==== G<sub>α</sub>シグナリング ====
 Gαには多くの組織に分布する4つのサブクラス(G<sub>αs</sub>, G<sub>αi/o</sub>, G<sub>αq/11</sub>, G<sub>α12/13</sub>)と、感覚器に特異的に発現するG<sub>αolf</sub>(嗅覚ニューロン)、G<sub>αt</sub>(トランスデューシン;視細胞網膜桿体・錐体外節)、G<sub>αgust</sub>(ガストデューシン;味細胞)がある。下記にアドレナリン受容体とヒスタミン受容体の例をあげているが、このように同じリガンドで活性化される同ファミリー受容体においても、共役するG<sub>α</sub>タンパク質の違いが細胞応答の違いを生み出す。<br />
 Gαには多くの組織に分布する4つのサブクラス(G<sub>αs</sub>, G<sub>αi/o</sub>, G<sub>αq/11</sub>, G<sub>α12/13</sub>)と、感覚器に特異的に発現するG<sub>αolf</sub>(嗅覚ニューロン)、G<sub>αt</sub>(トランスデューシン;視細胞網膜桿体・錐体外節)、G<sub>αgust</sub>(ガストデューシン;味細胞)がある。下記にアドレナリン受容体とヒスタミン受容体の例をあげているが、このように同じリガンドで活性化される同ファミリー受容体においても、共役するG<sub>α</sub>タンパク質の違いが細胞応答の違いを生み出す。<br />


85行目: 87行目:
G<sub>α12/13</sub> ;  細胞骨格、細胞間結合などに関与する。<br />
G<sub>α12/13</sub> ;  細胞骨格、細胞間結合などに関与する。<br />


===== G<sub>βγ</sub>シグナリング =====
==== G<sub>βγ</sub>シグナリング ====
 G<sub>βγ</sub>と結合したG<sub>α</sub>はGDPとの親和性が上がることから、G<sub>βγ</sub>の第一の機能はG<sub>αβγ</sub>三量体を不活性状態に保つことだと考えられる。一方で、G<sub>αi/o</sub>と共役するGPCRではG<sub>βγ</sub>のシグナル伝達が重要となる。G<sub>i/o</sub>はG<sub>s</sub>やG<sub>q</sub>と比較して細胞内に高濃度で存在するため、G<sub>αi/o</sub>共役型GPCRが活性化すると放出されるG<sub>βγ</sub>の量は多くなる。G<sub>βγ</sub>はG<sub>αi/o</sub>共役型GPCRの下流でGタンパク質活性化カリウム(GIRK)チャネルやP/Q型とN型の電位依存性カルシウムチャネル、さらにはホスホリパーゼC、PI<sub>3</sub>キナーゼなどを活性化することが知られている。
 G<sub>βγ</sub>と結合したG<sub>α</sub>はGDPとの親和性が上がることから、G<sub>βγ</sub>の第一の機能はG<sub>αβγ</sub>三量体を不活性状態に保つことだと考えられる。一方で、G<sub>αi/o</sub>と共役するGPCRではG<sub>βγ</sub>のシグナル伝達が重要となる。G<sub>i/o</sub>はG<sub>s</sub>やG<sub>q</sub>と比較して細胞内に高濃度で存在するため、G<sub>αi/o</sub>共役型GPCRが活性化すると放出されるG<sub>βγ</sub>の量は多くなる。G<sub>βγ</sub>はG<sub>αi/o</sub>共役型GPCRの下流でGタンパク質活性化カリウム(GIRK)チャネルやP/Q型とN型の電位依存性カルシウムチャネル、さらにはホスホリパーゼC、PI<sub>3</sub>キナーゼなどを活性化することが知られている。


==== Gタンパク質非依存的シグナリング ====
=== Gタンパク質非依存的シグナリング ===
 リガンド刺激により活性化し細胞内領域をリン酸化された受容体は、βアレスチン1/2と結合することで、1)Gタンパク質シグナルが収束し、2)エンドサイト―シスにより細胞外リガンドのアクセスを阻害する。一般的にはこの状態を脱感作というが、細胞内小胞に乗った受容体はβアレスチンを介してGタンパク質非依存的に下流にシグナルを伝達する。例えば、β<sub>2</sub>アドレナリン受容体、アンジオテンシン1a受容体、P<sub>2</sub>Y<sub>2</sub>受容体、CB<sub>1</sub>受容体ではβアレスチンを介してERK1/2(Extracellullar signal-regulated kinase)の経路を活性化する<ref><pubmed> 26471844 </pubmed></ref>。
 リガンド刺激により活性化し細胞内領域をリン酸化された受容体は、βアレスチン1/2と結合することで、1)Gタンパク質シグナルが収束し、2)エンドサイト―シスにより細胞外リガンドのアクセスを阻害する。一般的にはこの状態を脱感作というが、細胞内小胞に乗った受容体はβアレスチンを介してGタンパク質非依存的に下流にシグナルを伝達する。例えば、β<sub>2</sub>アドレナリン受容体、アンジオテンシン1a受容体、P<sub>2</sub>Y<sub>2</sub>受容体、CB<sub>1</sub>受容体ではβアレスチンを介してERK1/2(Extracellullar signal-regulated kinase)の経路を活性化する<ref><pubmed> 26471844 </pubmed></ref>。


案内メニュー