「介在ニューロン」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
14行目: 14行目:


==ニューロンの分類==
==ニューロンの分類==
 ニューロンはその機能に応じて、「感覚ニューロン」「運動ニューロン」「(広義の)介在ニューロン」の3つに分類することができる<ref name=ref1><pubmed></pubmed></ref> <ref name=ref2><pubmed></pubmed></ref> <ref name=ref3><pubmed></pubmed></ref> <ref name=ref4><pubmed></pubmed></ref> <ref name=ref5><pubmed></pubmed></ref> <ref name=ref6><pubmed></pubmed></ref>。感覚ニューロンは、受容器を介して外界からの情報を中枢に伝える。運動ニューロンは、中枢から効果器([[筋肉]]等)に情報を送る。介在ニューロンは、感覚ニューロンと運動ニューロンの間に位置し、ニューロン間の情報処理・伝達を行う。
 ニューロンはその機能に応じて、「感覚ニューロン」「運動ニューロン」「(広義の)介在ニューロン」の3つに分類することができる<ref name=ref1><pubmed>91196</pubmed></ref> <ref name=ref2>'''Walle J. H. Nauta and Michael Feirtag(訳 松下松雄)'''<br>脳の神経回路網<br>''脳を探る'' 日経サイエンス社 pp.22-37 (1979)
</ref> <ref name=ref3>'''Walle J. H. Nauta, Harvey J. Karten'''<br>A General Profile of the Vertebrate Brain, with Sidelights on the Ancestry of Cerebral Cortex.<br>In Neurosciences: Second Study Program, ed. FO Schmitt, pp. 7-26. <br>New York: ''Rockefeller Univ. Press'', 1970</ref> <ref name=ref4><pubmed>13947051</pubmed></ref> <ref name=ref5><pubmed>1315446</pubmed></ref> <ref name=ref6>'''Eric Kandel, James Schwartz, Thomas Jessel, Steven Sieqelbaum, AJ Hudspeth'''<br>Principles of Neural Science, 5th edition<br>''McGraw-Hill'', 2012, ISBN 978-0071390118</ref>。感覚ニューロンは、受容器を介して外界からの情報を中枢に伝える。運動ニューロンは、中枢から効果器([[筋肉]]等)に情報を送る。介在ニューロンは、感覚ニューロンと運動ニューロンの間に位置し、ニューロン間の情報処理・伝達を行う。


==介在ニューロン回路網==
==介在ニューロン回路網==
27行目: 28行目:


==大脳新皮質における介在ニューロン==
==大脳新皮質における介在ニューロン==
[[image:介在ニューロン1.png|thumb|200px|'''図1.大脳新皮質介在ニューロンの形態'''<ref name=ref26><pubmed></pubmed></ref>より改変]]
[[image:介在ニューロン1.png|thumb|200px|'''図1.大脳新皮質介在ニューロンの形態'''<ref name=ref26><pubmed>21994491</pubmed></ref>より改変]]


 大脳新皮質には大別して二種の神経細胞が存在する<ref name=ref7><pubmed></pubmed></ref> <ref name=ref8><pubmed></pubmed></ref>。[[グルタミン酸]]を神経伝達物質として放出する[[興奮性]]の[[錐体細胞]]、[[GABA]]を放出する[[抑制性]]神経細胞である。一部を除き<ref name=ref9><pubmed></pubmed></ref>、抑制性神経細胞のほとんどは軸索を局所にのみ展開することから、大脳新皮質介在ニューロン(neocortical interneuron)と呼ばれる。
 大脳新皮質には大別して二種の神経細胞が存在する<ref name=ref7><pubmed>'''Peters A, Jones EG.'''<br>Classification of cortical neurons.<br>In: Peters A, Jones EG, editors. Cerebral cortex, volume 1, cellular components of the cerebral cortex. <br>New York: ''Plenum Press'', pp.107-121 (1984)
</pubmed></ref> <ref name=ref8><pubmed>1410442</pubmed></ref>。[[グルタミン酸]]を神経伝達物質として放出する[[興奮性]]の[[錐体細胞]]、[[GABA]]を放出する[[抑制性]]神経細胞である。一部を除き<ref name=ref9><pubmed>21151790</pubmed></ref>、抑制性神経細胞のほとんどは軸索を局所にのみ展開することから、大脳新皮質介在ニューロン(neocortical interneuron)と呼ばれる。


 大脳新皮質介在ニューロンは、形態学的、電気生理学的、神経化学的に多種多様であることが知られており、多くの分類法が提唱されてきた<ref name=ref10><pubmed></pubmed></ref> <ref name=ref11><pubmed></pubmed></ref> <ref name=ref12><pubmed></pubmed></ref> <ref name=ref13><pubmed></pubmed></ref> <ref name=ref14><pubmed></pubmed></ref> <ref name=ref15><pubmed></pubmed></ref> <ref name=ref16><pubmed></pubmed></ref>。今でも分類に関する研究が盛んであり、様々な手法・視点から研究が推進されている<ref name=ref17><pubmed></pubmed></ref> <ref name=ref18><pubmed></pubmed></ref> <ref name=ref19><pubmed></pubmed></ref> <ref name=ref20><pubmed></pubmed></ref> <ref name=ref21><pubmed></pubmed></ref> <ref name=ref22><pubmed></pubmed></ref>。なかでも神経化学マーカーによる分類は、発現する遺伝子に基づく分類法であり、その有用性から広く用いられており、現在では以下の三群に分けることが一般的である<ref name=ref26 /> <ref name=ref10 /> <ref name=ref23><pubmed></pubmed></ref> <ref name=ref24><pubmed></pubmed></ref> <ref name=ref25><pubmed></pubmed></ref> <ref name=ref27><pubmed></pubmed></ref>。すなわち、① パルブアルブミン(PV)発現細胞、②ソマトスタチン(SOM)発現細胞、③ その他の抑制性神経細胞である。PVとSOM以外にも多くの神経化学マーカーが存在し、[[マウス]]大脳新皮質では、血管作動性腸管ペプチド(VIP)が用いられることが最近では多い(図1)。
 大脳新皮質介在ニューロンは、形態学的、電気生理学的、神経化学的に多種多様であることが知られており、多くの分類法が提唱されてきた<ref name=ref10><pubmed>9276173</pubmed></ref> <ref name=ref11><pubmed>11549736</pubmed></ref> <ref name=ref12><pubmed>12815247</pubmed></ref> <ref name=ref13><pubmed>15378039</pubmed></ref> <ref name=ref14><pubmed>18568015</pubmed></ref> <ref name=ref15><pubmed>23385869</pubmed></ref> <ref name=ref16><pubmed>24650498</pubmed></ref>。今でも分類に関する研究が盛んであり、様々な手法・視点から研究が推進されている<ref name=ref17><pubmed>15142960</pubmed></ref> <ref name=ref18><pubmed>21467210</pubmed></ref> <ref name=ref19><pubmed>21220766</pubmed></ref> <ref name=ref20><pubmed>24122731</pubmed></ref> <ref name=ref21><pubmed>26612957</pubmed></ref> <ref name=ref22><pubmed>26727548</pubmed></ref>。なかでも神経化学マーカーによる分類は、発現する遺伝子に基づく分類法であり、その有用性から広く用いられており、現在では以下の三群に分けることが一般的である<ref name=ref26 /> <ref name=ref10 /> <ref name=ref23><pubmed>18958197</pubmed></ref> <ref name=ref24><pubmed>19950390</pubmed></ref> <ref name=ref25><pubmed>21154909</pubmed></ref> <ref name=ref27><pubmed>24478631</pubmed></ref>。すなわち、① パルブアルブミン(PV)発現細胞、②ソマトスタチン(SOM)発現細胞、③ その他の抑制性神経細胞である。PVとSOM以外にも多くの神経化学マーカーが存在し、[[マウス]]大脳新皮質では、血管作動性腸管ペプチド(VIP)が用いられることが最近では多い(図1)。


 こうした化学的分類は、形態学的分類および電気生理学的分類とよく対応することが知られている<ref name=ref10 /> <ref name=ref12 /> <ref name=ref13 /> <ref name=ref14 /> <ref name=ref16 /> <ref name=ref19 />。
 こうした化学的分類は、形態学的分類および電気生理学的分類とよく対応することが知られている<ref name=ref10 /> <ref name=ref12 /> <ref name=ref13 /> <ref name=ref14 /> <ref name=ref16 /> <ref name=ref19 />。
39行目: 41行目:


===SOM発現細胞===
===SOM発現細胞===
 SOM発現細胞の軸索は第一層まで展開し、マルチノッチ細胞(Martinotti細胞)と呼ばれる。大脳新皮質介在ニューロンは、樹状突起上に棘突起(spine)がほとんど認められないとされるが、マルチノッチ細胞は比較的高い密度で棘突起を持つことが知られている<ref name=ref28><pubmed></pubmed></ref>。電気生理学的には、non-FS細胞もしくは低[[閾値]]で[[カルシウム]]電流が生じバースト状に発火する LTS細胞(low-threshold spiking cell)に対応する。
 SOM発現細胞の軸索は第一層まで展開し、マルチノッチ細胞(Martinotti細胞)と呼ばれる。大脳新皮質介在ニューロンは、樹状突起上に棘突起(spine)がほとんど認められないとされるが、マルチノッチ細胞は比較的高い密度で棘突起を持つことが知られている<ref name=ref28><pubmed>16107588</pubmed></ref>。電気生理学的には、non-FS細胞もしくは低[[閾値]]で[[カルシウム]]電流が生じバースト状に発火する LTS細胞(low-threshold spiking cell)に対応する。


===VIP発現細胞===
===VIP発現細胞===
48行目: 50行目:


==大脳新皮質介在ニューロンの役割==
==大脳新皮質介在ニューロンの役割==
 近年、大脳新皮質介在ニューロン同士の[[シナプス]]結合に関する研究が大きく進展し、密なネットワークを形成していることが明らかになってきている<ref name=ref29><pubmed></pubmed></ref> <ref name=ref30><pubmed></pubmed></ref> <ref name=ref31><pubmed></pubmed></ref> <ref name=ref32><pubmed></pubmed></ref> <ref name=ref33><pubmed></pubmed></ref> <ref name=ref34><pubmed></pubmed></ref>。大脳新皮質介在ニューロンは高次機能発現<ref name=ref35><pubmed></pubmed></ref> <ref name=ref36><pubmed></pubmed></ref>や各種精神疾患([[統合失調症]]や[[自閉症]]等)<ref name=ref37><pubmed></pubmed></ref> <ref name=ref38><pubmed></pubmed></ref>との深い関連が指摘されており、大脳新皮質の動作原理解明、そして各種精神疾患の病態解明が期待されるところである<ref name=ref39><pubmed></pubmed></ref>。
 近年、大脳新皮質介在ニューロン同士の[[シナプス]]結合に関する研究が大きく進展し、密なネットワークを形成していることが明らかになってきている<ref name=ref29><pubmed>24097044</pubmed></ref> <ref name=ref30><pubmed>23817549</pubmed></ref> <ref name=ref31><pubmed>24097352</pubmed></ref> <ref name=ref32><pubmed>23303934</pubmed></ref> <ref name=ref33><pubmed>24429630</pubmed></ref> <ref name=ref34><pubmed>25467527</pubmed></ref>。大脳新皮質介在ニューロンは高次機能発現<ref name=ref35><pubmed>17180162</pubmed></ref> <ref name=ref36><pubmed>26494276</pubmed></ref>や各種精神疾患([[統合失調症]]や[[自閉症]]等)<ref name=ref37><pubmed>25863358</pubmed></ref> <ref name=ref38><pubmed>17543897</pubmed></ref>との深い関連が指摘されており、大脳新皮質の動作原理解明、そして各種精神疾患の病態解明が期待されるところである<ref name=ref39>'''日置寛之'''<br>抑制性インターニューロンとオシレーション<br>''Clinical Neuroscience'': 2014, 32;743-6</ref>。


==関連項目==
==関連項目==

案内メニュー