246
回編集
Masahitoyamagata (トーク | 投稿記録) 細 (→機能的コネクトーム) |
Masahitoyamagata (トーク | 投稿記録) 細 (→巨視的なコネクトーム) |
||
62行目: | 62行目: | ||
==巨視的なコネクトーム== | ==巨視的なコネクトーム== | ||
Olaf Spornsによるヒト・コネクトームの提唱以来、脳の機能と病態を理解するためにヒトの脳で研究されているのは、メソレベルのコネクトームより更に大きく、脳全体を視野にいれた「マクロスケール Macroscale」の巨視的なコネクトームである。これは、しばしば、様々なタスクに伴う脳の活動領域を観察する[[脳マッピング]]と同等のものとみなされる。米国の脳科学プロジェクトであるBRAINイニシアティブの一部として実施されている国際プロジェクトであるHuman Connectome | Olaf Spornsによるヒト・コネクトームの提唱以来、脳の機能と病態を理解するためにヒトの脳で研究されているのは、メソレベルのコネクトームより更に大きく、脳全体を視野にいれた「マクロスケール Macroscale」の巨視的なコネクトームである。これは、しばしば、様々なタスクに伴う脳の活動領域を観察する[[脳マッピング]]と同等のものとみなされる。米国の脳科学プロジェクトであるBRAINイニシアティブの一部として実施されている国際プロジェクトであるHuman Connectome Project<ref>http://www.neuroscienceblueprint.nih.gov/connectome/</ref>では、fMRIによる活動領域の検出など機能的な側面に重点を置く国際プロジェクトThe WU-Minn Project<ref>https://www.humanconnectome.org/</ref>と、非侵襲なテンソルMRIなどを中心に用い神経線維の走行を重視するThe Harvard/MGH-UCLA Project<ref>http://www.humanconnectomeproject.org/</ref>が実施されてきた。いずれも、解像度が上がれば、メソスケールのコネクトームにも近づくが、非侵襲で得られる解像度は、最大でもミリメートル程度であり、侵襲的な方法で得られる解像度とは違いがある。 | ||
⾮侵襲脳計測法として、現在、ヒトの脳活動解析技術の主役となっているのは、fMRI(functional MRI)である。fMRIでは、MRIにより、⾎流の流れと、脱酸素化ヘモグロビンの濃度変化をみている(BOLD効果)。つまり、ニューロンの活動を直接観察しているわけではないので、実際のニューロンの活動とは、秒単位の時間的なズレがある。そして、休⽌状態の⼤脳のある領域と別の領域が同調して⾃発的に変動するということが、結合状態にあるということを意味していると仮定すれば、fMRIを使って、領域間のつながりも推定することもできる(休⽌状態fMRI)。この⽅法は、領域間の結合関係、つまりコネクトーム推定の有⼒な⼿段になっている。実際に⼤規模なデータを集めてきているのは、⽶Washington University(ミズーリ州セントルイス)と⽶University ofMinnesota、そして英Oxford Universityを中⼼とするコンソーシアムである。このプロジェクトでは、健常な成⼈を⽬標に、fMRI、PET、EEG、MEGを使うことで、それぞれの脳や⾏動関係の情報を収集してきている。また、同様な方法論は、脳機能の理解に利用されている。例えば、2016年、California大学Berkeley校のグループは、自然言語のそれぞれの単語と大脳皮質活動領域を関連づけるマップを作製した<ref><pubmed>27121839</pubmed></ref>。 | ⾮侵襲脳計測法として、現在、ヒトの脳活動解析技術の主役となっているのは、fMRI(functional MRI)である。fMRIでは、MRIにより、⾎流の流れと、脱酸素化ヘモグロビンの濃度変化をみている(BOLD効果)。つまり、ニューロンの活動を直接観察しているわけではないので、実際のニューロンの活動とは、秒単位の時間的なズレがある。そして、休⽌状態の⼤脳のある領域と別の領域が同調して⾃発的に変動するということが、結合状態にあるということを意味していると仮定すれば、fMRIを使って、領域間のつながりも推定することもできる(休⽌状態fMRI)。この⽅法は、領域間の結合関係、つまりコネクトーム推定の有⼒な⼿段になっている。実際に⼤規模なデータを集めてきているのは、⽶Washington University(ミズーリ州セントルイス)と⽶University ofMinnesota、そして英Oxford Universityを中⼼とするコンソーシアムである。このプロジェクトでは、健常な成⼈を⽬標に、fMRI、PET、EEG、MEGを使うことで、それぞれの脳や⾏動関係の情報を収集してきている。また、同様な方法論は、脳機能の理解に利用されている。例えば、2016年、California大学Berkeley校のグループは、自然言語のそれぞれの単語と大脳皮質活動領域を関連づけるマップを作製した<ref><pubmed>27121839</pubmed></ref>。 |