「コネクトーム」の版間の差分

ナビゲーションに移動 検索に移動
25行目: 25行目:
<br />
<br />


一方、Olaf Spornsによるヒト・コネクトームの提唱以来、脳の機能と病態を理解するためにヒトの脳で研究されているのは、メソレベルのコネクトームより更にスケールの大きな'''「マクロスケール Macroscale」'''のコネクトームである。これは小型の動物ではなく、ヒト、サル(マーモセットを含む)など比較的大型の動物での。この情報を収集しているのは、Human Connectome Project<ref>http://www.neuroscienceblueprint.nih.gov/connectome/</ref>である。これには、非侵襲な[[テンソルMRI]]などを中心に用い神経線維の走行など解剖学的な側面に注目しているThe Harvard/MGH-UCLA Project<ref>http://www.humanconnectomeproject.org/</ref>、および脳における[[fMRI]]による活動領域の検出やゲノム情報など機能的な側面に重点を置く国際プロジェクトThe WU-Minn Project <ref>http://humanconnectome.org/</ref>がある。いずれも、解像度が上がれば、メソスケールのコネクトームにも近づくが、非侵襲で得られる解像度は、最大でもミリメートル程度であり、侵襲的な方法で得られる解像度とは違いがある。
一方、Olaf Spornsによるヒト・コネクトームの提唱以来、脳の機能と病態を理解するためにヒトの脳で研究されているのは、メソレベルのコネクトームより更にスケールの大きな'''「マクロスケール Macroscale」'''のコネクトームである<ref>'''Henry Kennedy, David C. Van Essen, Yves Christen (eds.)''' (2016) Micro-, Meso- and Macro-Connectomics of the Brain  (Springer) [http://link.springer.com/book/10.1007%2F978-3-319-27777-6 [OpenAccess<nowiki>]</nowiki>]</ref>。これは小型の動物ではなく、ヒト、サル(マーモセットを含む)など比較的大型の動物での。この情報を収集しているのは、Human Connectome Project<ref>http://www.neuroscienceblueprint.nih.gov/connectome/</ref>である。これには、非侵襲な[[テンソルMRI]]などを中心に用い神経線維の走行など解剖学的な側面に注目しているThe Harvard/MGH-UCLA Project<ref>http://www.humanconnectomeproject.org/</ref>、および脳における[[fMRI]]による活動領域の検出やゲノム情報など機能的な側面に重点を置く国際プロジェクトThe WU-Minn Project <ref>http://humanconnectome.org/</ref>がある。いずれも、解像度が上がれば、メソスケールのコネクトームにも近づくが、非侵襲で得られる解像度は、最大でもミリメートル程度であり、侵襲的な方法で得られる解像度とは違いがある。


以上、肉眼、光学顕微鏡のレベルである「メソスケール」、電子顕微鏡レベルである「ミクロスケール」、そして非侵襲で観察される脳の構造や活動を観察する「マクロスケール」の3つの階層での断絶が、コネクトームの研究では認識されているのが現状である。しかし、例えば、深度のある組織の観察を可能にする[[多光子励起顕微鏡]]、広い範囲を高速で観察できる[[光シート顕微鏡]]、光学顕微鏡の解像度を著しく向上させる[[ナノスコピー]](PALM, STORMなど)<ref><pubmed>23063602</pubmed></ref>、が改良されれば、これらのスケールの間の断絶を埋めることができる。
以上、肉眼、光学顕微鏡のレベルである「メソスケール」、電子顕微鏡レベルである「ミクロスケール」、そして非侵襲で観察される脳の構造や活動を観察する「マクロスケール」の3つの階層での断絶が、コネクトームの研究では認識されているのが現状である。しかし、例えば、深度のある組織の観察を可能にする[[多光子励起顕微鏡]]、広い範囲を高速で観察できる[[光シート顕微鏡]]、光学顕微鏡の解像度を著しく向上させる[[ナノスコピー]](PALM, STORMなど)<ref><pubmed>23063602</pubmed></ref>、が改良されれば、これらのスケールの間の断絶を埋めることができる。

案内メニュー