9,444
回編集
細編集の要約なし |
細編集の要約なし |
||
26行目: | 26行目: | ||
==機能== | ==機能== | ||
=== 受容体 === | === 受容体 === | ||
LHとFSHに対する受容体はいずれもGタンパク質共役型受容体であり、典型的な7回膜貫通型受容体タンパク質からなる。さらに、上述したように、LH、FSHと共通した性質をもつ糖タンパク質ホルモンであるTSHの受容体と合わせて、これら糖タンパク質ホルモンの受容体は、共通して、大きな細胞外領域をもつことも知られているが、3種の異なるリガンドを認識する細胞外領域についての研究も進んでいる。一方、いずれの受容体もG<sub>s</sub>よりなる3量体Gタンパク質に共役していて、ホルモンが受容体に結合することによりG<sub>s</sub>の活性化がアデニリル酸シクラーゼの活性化を引き起こし、細胞質中のサイクリックAMP(cAMP)濃度が上昇することが知られている。さらには、この下流でcAMP依存性キナーゼ(PKA)の活性化を伴うことも知られている。 | |||
===生殖腺に対する作用=== | ===生殖腺に対する作用=== | ||
上述したように、LHとFSHは、それぞれ、主に[[ヒト]]における作用という観点から「黄体形成ホルモン」「濾胞刺激ホルモン」と呼ばれているが、LHは主に[[精巣]]では[[wj:間質ライディヒ細胞|間質ライディヒ細胞]]の[[アンドロゲン]][[分泌]]を刺激し、[[卵巣]]では[[wj:排卵|排卵]]を促すはたらきをもち、FSHは精巣では精子形成に、卵巣では主に[wj:ろ胞|ろ胞]]の発達に対して作用があると考えられてきた。 つまり、これらの生殖腺組織にはLH受容体やFSH受容体がそれぞれの組織の特異的な細胞に発現しているのだが、それぞれの細胞における受容体活性化以降の下流の細胞内情報伝達系のシグナル経路については、様々な研究がなされている。一方で、cAMP-PKA系の活性化以降のシグナル経路や、これとは異なるシグナル経路の存在、さらには様々なシグナル経路のクロストーク、細胞に特異的な生理作用の発現機構等については未解明の点も多く、今後の研究が待たれる。この辺の事情については既に詳細なレビューがあるので、文献<ref>'''Funzicker-Dunn, M., and Mayo, K.,'''<br>Gonadotropin signaling in the ovary. <br>In: Konobil and Neill’s Physiology of Reproduction, Third Edtion ed. by J.D. Neil<br>2006: pp. 547-592.</ref>を参照していただきたい。 | |||
さらに、ほ乳類においては、LHの血中レベルが数10分ないし数時間の周期でパルス状に変動する、いわゆるパルス状分泌という現象が知られており、このパルス頻度が性腺の活動を制御していると考えられている。一方で、雌の排卵前の特定の時期には一過性のLHの大量放出(サージ状放出とよばれる)が起き、これが排卵の引き金になることが多くの動物種で知られている。このように、LHはほ乳類においては、パルスとサージという異なる分泌パターンを介して、性腺の活動と排卵の両者を調節しているらしい。最近の、[[マウス]]を用いたLHやFSHの遺伝子ノックアウト動物の解析から、LHやFSHの機能に関しては、さらに理解が進んできている<ref name=ref1><pubmed>15569941</pubmed></ref> <ref name=ref2><pubmed>9020850</pubmed></ref>。 | さらに、ほ乳類においては、LHの血中レベルが数10分ないし数時間の周期でパルス状に変動する、いわゆるパルス状分泌という現象が知られており、このパルス頻度が性腺の活動を制御していると考えられている。一方で、雌の排卵前の特定の時期には一過性のLHの大量放出(サージ状放出とよばれる)が起き、これが排卵の引き金になることが多くの動物種で知られている。このように、LHはほ乳類においては、パルスとサージという異なる分泌パターンを介して、性腺の活動と排卵の両者を調節しているらしい。最近の、[[マウス]]を用いたLHやFSHの遺伝子ノックアウト動物の解析から、LHやFSHの機能に関しては、さらに理解が進んできている<ref name=ref1><pubmed>15569941</pubmed></ref> <ref name=ref2><pubmed>9020850</pubmed></ref>。 | ||
しかしながら、ほ乳類以外の脊椎動物においては、こうした解析がこれまでほとんど行われてこず、LHやFSHの生理作用や調節機構がほ乳類と共通しているかどうかについては不明であった。ごく最近になって、[[TALEN]]や[[CRISPR]]などの、いわゆる[[ゲノム編集]]技術の目覚ましい発展により、[[ゼブラフィッシュ]]<ref name=ref3><pubmed> 25993524</pubmed></ref>やメダカ<ref name=ref4> | しかしながら、ほ乳類以外の脊椎動物においては、こうした解析がこれまでほとんど行われてこず、LHやFSHの生理作用や調節機構がほ乳類と共通しているかどうかについては不明であった。ごく最近になって、[[TALEN]]や[[CRISPR]]などの、いわゆる[[ゲノム編集]]技術の目覚ましい発展により、[[ゼブラフィッシュ]]<ref name=ref3><pubmed> 25993524</pubmed></ref>やメダカ<ref name=ref4><pubmed>27560548</pubmed></ref>などの小型動物を使って[[遺伝子ノックアウト動物]]の作成が比較的容易にできるようになり、ほ乳類以外の脊椎動物におけるLHやFSHの機能も詳細に解析できるようになりつつある。それらの結果からは、おおまかにいって、雌ではFSHは卵胞発育過程を促し、LHは排卵の引き金を引く、という機能の分業が行われているらしく、真骨魚類とは進化の過程が大きく異なるほ乳類では、LHのパルス状分泌という現象が見られるようになったために、後期卵胞発育の過程が、LHによって、環境要因による微妙な調節を受けられるようになったのではないかと考えられる<ref name=ref2 />。 | ||
===中枢神経系による性腺刺激ホルモンの調節=== | ===中枢神経系による性腺刺激ホルモンの調節=== | ||
[[image:性腺刺激ホルモン2.png|thumb|350px|'''図2.GFP標識されたGnRHニューロンの蛍光顕微鏡像'''<br><ref name=ref12><pubmed>16293668</pubmed></ref>を改変]] | [[image:性腺刺激ホルモン2.png|thumb|350px|'''図2.GFP標識されたGnRHニューロンの蛍光顕微鏡像'''<br><ref name=ref12><pubmed>16293668</pubmed></ref>を改変]] | ||
生殖をはじめとする体の自律的な機能が脳下垂体から分泌されるホルモンによって調節され、その脳下垂体ホルモンが、脳の[[視床下部]]に存在する因子によって制御されているという考えは、1970年代までに既に生まれていたようである。そのような背景の中、1977年に、[[wj:アルフレッド・ギルマン|ギルマン]]らの研究グループと[[wj:アンドルー・ウィクター・シャリー|シャリー]] | 生殖をはじめとする体の自律的な機能が脳下垂体から分泌されるホルモンによって調節され、その脳下垂体ホルモンが、脳の[[視床下部]]に存在する因子によって制御されているという考えは、1970年代までに既に生まれていたようである。そのような背景の中、1977年に、[[wj:アルフレッド・ギルマン|ギルマン]]らの研究グループと[[wj:アンドルー・ウィクター・シャリー|シャリー]]らの研究グループが熾烈な戦いの後に、両者ほぼ同時期に、視床下部に存在する、そのような機能をもつ因子を発見し、ノーベル医学生理学賞を受賞した。 | ||
このような因子のうち生殖の中枢制御を担うものは10個のアミノ酸からなるペプチドホルモンであり、性腺刺激ホルモン放出ホルモンとよばれた(特に、LH放出を促進する機能に注目して、当時はLHRHとよばれた;RHはreleasing hormone=放出ホルモンの略)。その後、LHRHはFSHの放出も促進するのではないかという実験的な証拠から、GnRH(gonadotropin-releasing hormone)とよばれるようになった。GnRHは視床下部GnRHニューロンで産生され、脳底の正中隆起とよばれる部位の脳下垂体門脈血中に放出され、脳下垂体前葉に運ばれて性腺刺激ホルモン放出を促進する、いわゆる向下垂体ホルモン(hypophysiotropic hormone)のひとつとしてほ乳類で最初に発見された(図1左図参照)。なお、このホルモンの発見の後に、1990年代から[[免疫組織化学]]およびin situ hybridization (ISH)を用いた形態学的な研究がなされ、脊椎動物脳内では、形態的・機能的に異なる3つのGnRH神経系が存在しているという基本的コンセンサスが得られている(「[[性行動の神経回路]]」参照)<ref name=ref5>'''岡良隆'''<br>環境に適応した行動を発言させる脊椎動物神経系・内分泌系のしくみ<br>in 行動とコミュニケーション, 岡・蟻川, Editors. <br>''シリーズ21世紀の動物科学'': 東京. p. 197-226. 1998</ref> <ref name=ref6><pubmed>7636018</pubmed></ref> <ref name=ref7>'''T. Karigo, and Y. Oka'''<br>Frontiers in Endocrinology “Biology of Gonadotropin-Releasing Hormone Neurons”<br>4, 177. 2013 (Article 177, 1-10)</ref>。 | このような因子のうち生殖の中枢制御を担うものは10個のアミノ酸からなるペプチドホルモンであり、性腺刺激ホルモン放出ホルモンとよばれた(特に、LH放出を促進する機能に注目して、当時はLHRHとよばれた;RHはreleasing hormone=放出ホルモンの略)。その後、LHRHはFSHの放出も促進するのではないかという実験的な証拠から、GnRH(gonadotropin-releasing hormone)とよばれるようになった。GnRHは視床下部GnRHニューロンで産生され、脳底の正中隆起とよばれる部位の脳下垂体門脈血中に放出され、脳下垂体前葉に運ばれて性腺刺激ホルモン放出を促進する、いわゆる向下垂体ホルモン(hypophysiotropic hormone)のひとつとしてほ乳類で最初に発見された(図1左図参照)。なお、このホルモンの発見の後に、1990年代から[[免疫組織化学]]およびin situ hybridization (ISH)を用いた形態学的な研究がなされ、脊椎動物脳内では、形態的・機能的に異なる3つのGnRH神経系が存在しているという基本的コンセンサスが得られている(「[[性行動の神経回路]]」参照)<ref name=ref5>'''岡良隆'''<br>環境に適応した行動を発言させる脊椎動物神経系・内分泌系のしくみ<br>in 行動とコミュニケーション, 岡・蟻川, Editors. <br>''シリーズ21世紀の動物科学'': 東京. p. 197-226. 1998</ref> <ref name=ref6><pubmed>7636018</pubmed></ref> <ref name=ref7>'''T. Karigo, and Y. Oka'''<br>Frontiers in Endocrinology “Biology of Gonadotropin-Releasing Hormone Neurons”<br>4, 177. 2013 (Article 177, 1-10)</ref>。 |