「ソニック・ヘッジホッグ」の版間の差分

編集の要約なし
15行目: 15行目:


== Ptc-Smo-Gliを介するソニック・ヘッジホッグ シグナル経路 ==
== Ptc-Smo-Gliを介するソニック・ヘッジホッグ シグナル経路 ==
 ソニック・ヘッジホッグによる主要な細胞内シグナル経路は、2つの膜タンパク質 – 12回膜貫通型Patched(Ptc)と7回膜貫通型のGタンパク質共役受容体(G-protein coupled receptor; GPCR)の1つSmoothened(Smo) − によって仲介されている。Patchedは細胞膜の中でも特に1次繊毛と呼ばれる細胞の突起部分に局在し、Shhと直接結合する。いったんShhがPtcに結合するとShh/Ptc複合体は繊毛から細胞膜へと移動する<ref><pubmed>17641202</pubmed></ref> 。一方、もう1つの膜タンパク質Smoは、細胞がShhに暴露されていないときには繊毛の周辺の細胞膜上に存在するが、細胞がShhによって刺激され、Shh/Ptc複合体が繊毛から退去すると、代わりに繊毛内へと進入する。
 ソニック・ヘッジホッグによる主要な細胞内シグナル経路は、2つの膜タンパク質 – 12回膜貫通型Patched(Ptc)と7回膜貫通型のGタンパク質共役受容体(G-protein coupled receptor; [[GPCR]])の1つSmoothened(Smo) − によって仲介されている。Patchedは細胞膜の中でも特に1次繊毛と呼ばれる細胞の突起部分に局在し、Shhと直接結合する。いったんShhがPtcに結合するとShh/Ptc複合体は繊毛から細胞膜へと移動する<ref><pubmed>17641202</pubmed></ref> 。一方、もう1つの膜タンパク質Smoは、細胞がShhに暴露されていないときには繊毛の周辺の細胞膜上に存在するが、細胞がShhによって刺激され、Shh/Ptc複合体が繊毛から退去すると、代わりに繊毛内へと進入する。


 細胞膜で受容されたシグナルを核に伝達するのは、Gli(ショウジョウバエではCubitus interruptus; Ci)と呼ばれるZnフィンガー型転写因子であり、脊椎動物に存在する3種類のGli(Gli1-3)<ref><pubmed>21801010</pubmed></ref> のうちShhのシグナルを1次的に伝達するのはGli2,3である。Gli2,3は繊毛内でSmoと何らかの相互作用をすることにより、シグナルを繊毛から核へと伝達する<ref><pubmed>16254602</pubmed></ref> 。Gli2/3は転写活性領域と抑制領域を併せ持つ転写因子で、Shhシグナルが存在しないときには翻訳されたポリペプチドが恒常的に分解(ユビキチン化)されてアミノ末端側だけの断片として存在し、転写抑制因子として働く。Gli2/3のユビキチン化は、まずPKA(プロテインキナーゼA)とGlycogen Synthase Kinase 3β(GSK3β)によってセリン残基がリン酸化され、それを、 βTrCP(E3ユビキチンリガーゼ)と足場タンパク質Cullin3を含むSCF βTrCP複合体がターゲットすることによって進む<ref><pubmed>16705181</pubmed></ref><ref><pubmed>16611981</pubmed></ref><ref><pubmed>16651270</pubmed></ref> 。
 細胞膜で受容されたシグナルを核に伝達するのは、Gli(ショウジョウバエではCubitus interruptus; Ci)と呼ばれるZnフィンガー型[[転写因子]]であり、脊椎動物に存在する3種類のGli(Gli1-3)<ref><pubmed>21801010</pubmed></ref> のうちShhのシグナルを1次的に伝達するのはGli2,3である。Gli2,3は繊毛内でSmoと何らかの相互作用をすることにより、シグナルを繊毛から核へと伝達する<ref><pubmed>16254602</pubmed></ref> 。Gli2/3は転写活性領域と抑制領域を併せ持つ転写因子で、Shhシグナルが存在しないときには翻訳されたポリペプチドが恒常的に分解(ユビキチン化)されてアミノ末端側だけの断片として存在し、転写抑制因子として働く。Gli2/3のユビキチン化は、まず[[PKA]]([[プロテインキナーゼA]])と[[Glycogen synthase kinase 3|Glycogen Synthase Kinase 3]]β([[GSK3β]])によって[[セリン]]残基がリン酸化され、それを、 βTrCP(E3ユビキチンリガーゼ)と[[足場タンパク質]]Cullin3を含むSCF βTrCP複合体がターゲットすることによって進む<ref><pubmed>16705181</pubmed></ref><ref><pubmed>16611981</pubmed></ref><ref><pubmed>16651270</pubmed></ref> 。


 いったんShhシグナルが細胞に導入されるとPKAが不活化され<ref><pubmed>24336288</pubmed></ref><ref><pubmed>27799542</pubmed></ref> 、Gli2/3のユビキチン分解が抑制されて全長型Gli2/3は繊毛内に移動する<ref><pubmed>16254602</pubmed></ref><ref><pubmed>20154143</pubmed></ref> 。その後、核に移動して遺伝子発現を誘導する<ref><pubmed>23799571</pubmed></ref> 。この際にはGli2/3に対してSPOPと呼ばれるユビキチンリガーゼによるユビキチン化が起こってタンパク質自体の安定性が変化する<ref><pubmed>20360384</pubmed></ref><ref><pubmed>20463034</pubmed></ref> ほか、さまざまな修飾(リン酸化、アセチル化、SUMO化)も関与してその転写活性を制御する<ref><pubmed>20360384</pubmed></ref><ref><pubmed>20711444</pubmed></ref><ref><pubmed>23762415</pubmed></ref><ref><pubmed>24373970</pubmed></ref> 。Gliタンパク質のDNA結合配列にはGACCACCCAという配列が提唱されてきた<ref><pubmed>9118802</pubmed></ref> が、最近、解離定数(結合のアフィニティー)が異なる別の配列も見つかっている<ref><pubmed>23153497</pubmed></ref> 。
 いったんShhシグナルが細胞に導入されるとPKAが不活化され<ref><pubmed>24336288</pubmed></ref><ref><pubmed>27799542</pubmed></ref> 、Gli2/3のユビキチン分解が抑制されて全長型Gli2/3は繊毛内に移動する<ref><pubmed>16254602</pubmed></ref><ref><pubmed>20154143</pubmed></ref> 。その後、核に移動して遺伝子発現を誘導する<ref><pubmed>23799571</pubmed></ref> 。この際にはGli2/3に対してSPOPと呼ばれるユビキチンリガーゼによるユビキチン化が起こってタンパク質自体の安定性が変化する<ref><pubmed>20360384</pubmed></ref><ref><pubmed>20463034</pubmed></ref> ほか、さまざまな修飾(リン酸化、[[アセチル化]]、SUMO化)も関与してその転写活性を制御する<ref><pubmed>20360384</pubmed></ref><ref><pubmed>20711444</pubmed></ref><ref><pubmed>23762415</pubmed></ref><ref><pubmed>24373970</pubmed></ref> 。Gliタンパク質の[[DNA]]結合配列にはGACCACCCAという配列が提唱されてきた<ref><pubmed>9118802</pubmed></ref> が、最近、解離定数(結合のアフィニティー)が異なる別の配列も見つかっている<ref><pubmed>23153497</pubmed></ref> 。


 Gli1-3は多くの臓器に発現しているためにそれらの遺伝子変異マウスの表現型も多様であり<ref><pubmed>9731531</pubmed></ref> 、神経系で強い表現型が現れるものもある。Gli2変異マウスでは、Shhシグナルの影響を受ける底板とV3介在神経領域の分化が抑制され、パターン形成に異常が生じて出生直後に死亡する<ref><pubmed>9636069</pubmed></ref> 。一方、Gli3変異マウスでは、主に脳領域でShhシグナルがむしろ亢進した表現型になるため<ref><pubmed>8387379</pubmed></ref><ref><pubmed>11017169</pubmed></ref> 、Gli3が主に転写抑制型として働くことが示唆される。Gli1単独の変異マウスでは神経系では大きな表現型が見つかっていないが、Gli2変異による表現型をGli1のノックインによって相補することができるため、Gli2の転写活性型と同様の働きをしていると考えられる<ref><pubmed>10725236</pubmed></ref><ref><pubmed>11748151</pubmed></ref> 。
 Gli1-3は多くの臓器に発現しているためにそれらの遺伝子変異マウスの表現型も多様であり<ref><pubmed>9731531</pubmed></ref> 、神経系で強い表現型が現れるものもある。Gli2変異マウスでは、Shhシグナルの影響を受ける[[底板]]とV3[[介在神経]]領域の[[分化]]が抑制され、パターン形成に異常が生じて出生直後に死亡する<ref><pubmed>9636069</pubmed></ref> 。一方、Gli3変異マウスでは、主に脳領域でShhシグナルがむしろ亢進した表現型になるため<ref><pubmed>8387379</pubmed></ref><ref><pubmed>11017169</pubmed></ref> 、Gli3が主に転写抑制型として働くことが示唆される。Gli1単独の変異マウスでは神経系では大きな表現型が見つかっていないが、Gli2変異による表現型をGli1のノックインによって相補することができるため、Gli2の転写活性型と同様の働きをしていると考えられる<ref><pubmed>10725236</pubmed></ref><ref><pubmed>11748151</pubmed></ref> 。


 Shhシグナルのターゲット遺伝子として代表的なものは、神経前駆細胞におけるOlig2やNkx2.2, FoxA2のように細胞の個性付けに関与する転写因子、またShhシグナルに直接関与するもの(Ptc, Gli1)などである<ref><pubmed>23719536</pubmed></ref><ref><pubmed>18794343</pubmed></ref> 。
 Shhシグナルのターゲット遺伝子として代表的なものは、[[神経前駆細胞]]におけるOlig2やNkx2.2, FoxA2のように細胞の個性付けに関与する転写因子、またShhシグナルに直接関与するもの(Ptc, Gli1)などである<ref><pubmed>23719536</pubmed></ref><ref><pubmed>18794343</pubmed></ref> 。


 先に述べたようにShhシグナルには細胞膜上に形成される1次繊毛の存在が必須である。1次繊毛に形成不全が生じるとShhシグナルが細胞に導入されず、結果として神経管はShh遺伝子変異マウスに類似した表現型になる<ref><pubmed>23799571</pubmed></ref> 。また、Gli3の不活性型を生じるプロセシングにはPKAが必要であり、PKA遺伝子のノックアウトはShhシグナルの異常亢進を反映した表現型となる<ref><pubmed>11886853</pubmed></ref> 。
 先に述べたようにShhシグナルには細胞膜上に形成される1次繊毛の存在が必須である。1次繊毛に形成不全が生じるとShhシグナルが細胞に導入されず、結果として[[神経管]]はShh遺伝子変異マウスに類似した表現型になる<ref><pubmed>23799571</pubmed></ref> 。また、Gli3の不活性型を生じるプロセシングにはPKAが必要であり、PKA遺伝子のノックアウトはShhシグナルの異常亢進を反映した表現型となる<ref><pubmed>11886853</pubmed></ref> 。


 Shh-Ptc-Smo-Gliを主軸とするShhシグナルを制御する調節因子の存在も知られている。SuFu(Suppressor of Fused)はcAMP依存的にGli2/3と結合して、タンパク質の安定化と抑制型を産出する<ref><pubmed>20360384</pubmed></ref> 。そのほかにGPR161(Gタンパク質共役受容体)のように繊毛に局在してそのcAMP濃度を上昇させ、Shhシグナルを負に制御する因子の存在も知られている<ref><pubmed>16459298</pubmed></ref><ref><pubmed>20956384</pubmed></ref><ref><pubmed>23332756</pubmed></ref> 。さらに最近、Shhが細胞に到達するとカルシウムイオンがTRPチャネルを介して繊毛内に流入し、アデニルシクラーゼ(AC5/6)の活性が阻害されることによって繊毛内のcAMP濃度が低下し、結果的にGliが活性化されるという現象が報告された<ref><pubmed>24336288</pubmed></ref><ref><pubmed>27799542</pubmed></ref> 。これらをはじめとして、20種類程度のタンパク質がShhシグナルの伝達を正または負に制御している<ref><pubmed>17662951</pubmed></ref> 。調節因子が多数存在する理由としては、Shhの活性が細胞依存的であることや、Shhは細胞増殖も制御するために細胞ががん化する危険があり、シグナル活性を厳密に制御する必要があることなどが考えられる<ref><pubmed>23799571</pubmed></ref> 。
 Shh-Ptc-Smo-Gliを主軸とするShhシグナルを制御する調節因子の存在も知られている。SuFu(Suppressor of Fused)は[[cAMP]]依存的にGli2/3と結合して、タンパク質の安定化と抑制型を産出する<ref><pubmed>20360384</pubmed></ref> 。そのほかにGPR161(Gタンパク質共役受容体)のように繊毛に局在してそのcAMP濃度を上昇させ、Shhシグナルを負に制御する因子の存在も知られている<ref><pubmed>16459298</pubmed></ref><ref><pubmed>20956384</pubmed></ref><ref><pubmed>23332756</pubmed></ref> 。さらに最近、Shhが細胞に到達すると[[カルシウムイオン]]がTRPチャネルを介して繊毛内に流入し、アデニルシクラーゼ(AC5/6)の活性が阻害されることによって繊毛内のcAMP濃度が低下し、結果的にGliが活性化されるという現象が報告された<ref><pubmed>24336288</pubmed></ref><ref><pubmed>27799542</pubmed></ref> 。これらをはじめとして、20種類程度のタンパク質がShhシグナルの伝達を正または負に制御している<ref><pubmed>17662951</pubmed></ref> 。調節因子が多数存在する理由としては、Shhの活性が細胞依存的であることや、Shhは[[細胞増殖]]も制御するために細胞ががん化する危険があり、シグナル活性を厳密に制御する必要があることなどが考えられる<ref><pubmed>23799571</pubmed></ref>
 
== ほかのソニック・ヘッジホッグシグナル経路 ==
 Shhは交連神経細胞のガイダンスに必須である<ref><pubmed>15746914</pubmed></ref><ref><pubmed>19447091</pubmed></ref><ref><pubmed>12679031</pubmed></ref> 。Shhは神経のガイダンス因子として知られるNetrinと協調して働き、交連神経が脊髄正中(midline)を交差するのに必要である<ref><pubmed>12679031</pubmed></ref> 。このガイダンスにはPtc/SmoではなくHIP(hedgehog interacting protein)がShhの受容体になっており<ref><pubmed>15746914</pubmed></ref> 、さらに細胞内ではSFKというキナーゼが活性化されている<ref><pubmed>19447091</pubmed></ref> 。また、繊維芽細胞の化学遊走にもShhが関与しているという報告があり、さらにこの現象においてはSmoが繊毛に局在しなくても細胞内シグナルが惹起されるため、従来とは異なるメカニズムが示唆されている<ref><pubmed>22912493</pubmed></ref> 。
 
== ソニック・ヘッジホッグシグナル経路が神経系に及ぼす役割 ==
 Shhと神経系について最も研究が進んでいるのは神経分化における役割である。1991年、Thomas M Jessellと山田俊哉は、脊策(notochord)を神経管の別の場所に移植し、移植した周辺領域の細胞が底板(floor plate)や運動神経(motor neuron)に異所的に分化することを発見し、脊策と底板から分化誘導因子が分泌されていることを示した<ref><pubmed>1991324</pubmed></ref><ref><pubmed>8500163</pubmed></ref> 。その後、この分泌因子がShhであること<ref><pubmed>8124714</pubmed></ref> 、さらにShhが神経管内で濃度勾配を形成することが明らかとなった<ref><pubmed>7736596</pubmed></ref><ref><pubmed>20066087</pubmed></ref> 。Shhは中枢神経系の中でも底板(floor plate)やその下部に存在する中胚葉系の組織(脊索:notochord)の細胞で発現し、発現細胞の周辺で濃度勾配を形成、モルフォゲンとし働いて濃度依存的に運動神経や介在神経の前駆細胞を誘導する(詳細は別項で議論する)。
 
 また生後の脳において、神経前駆細胞の存在が知られており、Shhシグナルが微小環境(ニッチ:niche)において活性化されて前駆細胞の幹細胞性を維持している<ref><pubmed>16208373</pubmed></ref><ref><pubmed>27666792</pubmed></ref> }