「CRMP」の版間の差分

ナビゲーションに移動 検索に移動
6,561 バイト追加 、 2017年5月31日 (水)
編集の要約なし
編集の要約なし
編集の要約なし
1行目: 1行目:
<div align="right">   
<div align="right">   
<font size="+1"> 久保 祐亮、[http://researchmap.jp/naoyukiinagaki 稲垣 直之]</font><br>
<font size="+1"> 久保 祐亮、浦崎明宏、[http://researchmap.jp/naoyukiinagaki 稲垣 直之]</font><br>
''奈良先端科学技術大学院大学 細胞内情報学講座''<br>
''奈良先端科学技術大学院大学 神経システム生物学研究室''<br>
DOI:<selfdoi /> 原稿受付日:2012年8月3日 原稿完成日:2012年10月26日<br>
DOI:<selfdoi /> 原稿受付日:2012年8月3日 原稿完成日:2012年10月26日 改訂版受付日:2017年5月30日<br>
担当編集委員:[http://researchmap.jp/noriko1128 大隅 典子](東北大学 大学院医学系研究科 附属創生応用医学研究センター [[脳神経]]科学コアセンター 発生発達神経科学分野)<br>
担当編集委員:[http://researchmap.jp/noriko1128 大隅 典子](東北大学 大学院医学系研究科 附属創生応用医学研究センター [[脳神経]]科学コアセンター 発生発達神経科学分野)<br>
</div>
</div>
10行目: 10行目:
同義語:コラプシン反応媒介タンパク質、ジヒドロピリミジナーゼ様タンパク質 (dihydropyrimidinase-like protein)  
同義語:コラプシン反応媒介タンパク質、ジヒドロピリミジナーゼ様タンパク質 (dihydropyrimidinase-like protein)  


{{box|text=
{{box|text= コラプシン反応媒介タンパク質(collapsin response mediator proteins, CRMPs)は、[[軸索]]の反発性因子である[[セマフォリン]]3A(Sema3A)の細胞内シグナルを伝達する分子として最初に同定された<ref name="ref1"><pubmed> 7637782 </pubmed></ref>。CRMPsは、細胞質タンパク質であり、これまでに5つのサブタイプ(CRMP1~5)が同定されている。これらの発現は主に発生時期の神経系に認められ、それぞれ特異的な発現分布と発現時期を示す<ref name="ref2"><pubmed> 14514985 </pubmed></ref>。CRMPsは[[線虫]]Unc-33の相同分子であり、Unc-33の突然変異は線虫の[[神経細胞]]において軸索の伸長やガイダンスの異常を引き起こす<ref name="ref3"><pubmed> 1468626 </pubmed></ref>。CRMPsは[[リン酸化]]タンパク質であり、リン酸化の制御は神経の発達や成熟に重要な役割を果たす<ref name="ref4"><pubmed> 17311006 </pubmed></ref><ref name="ref5"><pubmed> 22351471 </pubmed></ref>。また、初代[[培養神経細胞]]や[[ノックアウトマウス]]を使った研究により、CRMPsの役割が明らかになってきており、極性・軸索形成や神経細胞の遊走、[[シナプス]]形成、[[シナプス可塑性]]、神経疾患といった様々な神経機能と病態に関与することが報告されている<ref name="ref4" /><ref name="ref5" />。}}
 コラプシン反応媒介タンパク質(collapsin response mediator proteins, CRMPs)は、[[軸索]]の反発性因子である[[セマフォリン]]3A(Sema3A)の細胞内シグナルを伝達する分子として最初に同定された<ref name="ref1"><pubmed> 7637782 </pubmed></ref>。CRMPsは、細胞質タンパク質であり、これまでに5つのサブタイプ(CRMP1~5)が同定されている。これらの発現は主に発生時期の神経系に認められ、それぞれ特異的な発現分布と発現時期を示す<ref name="ref2"><pubmed> 14514985 </pubmed></ref>。CRMPsは[[線虫]]Unc-33の相同分子であり、Unc-33の突然変異は線虫の[[神経細胞]]において軸索の伸長やガイダンスの異常を引き起こす<ref name="ref3"><pubmed> 1468626 </pubmed></ref>。CRMPsは[[リン酸化]]タンパク質であり、リン酸化の制御は神経の発達や成熟に重要な役割を果たす<ref name="ref4"><pubmed> 17311006 </pubmed></ref><ref name="ref5"><pubmed> 22351471 </pubmed></ref>。また、初代[[培養神経細胞]]や[[ノックアウトマウス]]を使った研究により、CRMPsの役割が明らかになってきており、極性・軸索形成や神経細胞の遊走、[[シナプス]]形成、[[シナプス可塑性]]、神経疾患といった様々な神経機能と病態に関与することが報告されている<ref name="ref4" /><ref name="ref5" />。  
}}


{{Infobox protein family
{{Infobox protein family
36行目: 34行目:
== 構造 ==
== 構造 ==


 CRMPsは[[wikipedia:ja:ウラシル|ウラシル]]と[[wikipedia:ja:チミジン|チミジン]]の[[wikipedia:ja:異化反応|異化反応]]に関わる[[wikipedia:ja:ジヒドロピリミジナーゼ|ジヒドロピリミジナーゼ]](DPYS)、バクテリアの酵素の[[wikipedia:ja:ヒダントイナーゼ|ヒダントイナーゼ]]とそれぞれ58%および40%の相同性を示すが、CRMPs自体にはこれらの酵素活性は認められない。CRMPsはリン酸化、[[wikipedia:ja:脱アミド化|脱アミド化]]、[[wikipedia:ja:酸化|酸化]]、[[wikipedia:ja:糖鎖|糖鎖]]修飾などの翻訳後修飾を受けることが明らかになっている。よくわかっている翻訳後修飾がリン酸化であり、主にCRMPsのC末端部で[[Rhoキナーゼ]]や[[Cdk5]]、[[GSK-3beta|GSK-3&beta;]]などによりリン酸化されることがわかっている。   
 CRMPsは[[wj:ウラシル|ウラシル]]と[[wj:チミジン|チミジン]]の[[wj:異化反応|異化反応]]に関わる[[wj:ジヒドロピリミジナーゼ|ジヒドロピリミジナーゼ]](DPYS)、バクテリアの酵素の[[wj:ヒダントイナーゼ|ヒダントイナーゼ]]とそれぞれ58%および40%の相同性を示すが、CRMPs自体にはこれらの酵素活性は認められない。CRMPsはリン酸化、[[wj:脱アミド化|脱アミド化]]、[[wj:酸化|酸化]]、[[wj:糖鎖|糖鎖]]修飾などの翻訳後修飾を受けることが明らかになっている。よくわかっている翻訳後修飾がリン酸化であり、主にCRMPsのC末端部で[[Rhoキナーゼ]]や[[Cdk5]]、[[GSK-3beta|GSK-3&beta;]]などによりリン酸化されることがわかっている。   


== サブファミリー ==
== サブファミリー ==


 これまでに5つのサブタイプ(CRMP1~5)が同定されている。線虫Unc-33の相同分子であり、CRMP1-4は互いに~75%相同性がある。[[CRMP5]]は他のCRMPと50-51%相同性がある。哺乳類のCRMP1、2、4は[[wikipedia:ja:選択的スプライシング|選択的スプライシング]]を受けることが報告されている。
 これまでに5つのサブタイプ([[CRMP1]]~[[CRMP5|5]])が同定されている。[[線虫]][[Unc-33]]の相同分子であり、CRMP1-[[CRMP4|4]]は互いに~75%相同性がある。CRMP5は他のCRMPと50-51%相同性がある。哺乳類のCRMP1、[[CRMP2|2]]、4は[[wj:選択的スプライシング|選択的スプライシング]]を受けることが報告されている。  
 
 CRMP1、CRMP2、[[CRMP3]]、CRMP4、CRMP5は、それぞれ[[DPYSL1]]([[Ulip3]], [[DRP1]], [[C22]])、[[DPYSL2]]([[Ulip2]], [[DRP2]], [[TOAD-64]])、[[DPYSL4]]([[Ulip4]], [[DRP4]])、[[DPYSL3]]([[Ulip1]], [[DRP3]], [[hUlip]])、[[DPYSL5]]([[Ulip6]], [[DRP5]], [[CRAM]])などとも呼ばれる


== 発現  ==
== 発現  ==
46行目: 46行目:
=== 発生期の神経系  ===
=== 発生期の神経系  ===


 [[ラット]]においては、初期胚から[[wikipedia:ja:有糸分裂|有糸分裂]]後の神経細胞において強く発現し、生後1週間前後でピークに達し、その後は発現量が低下する。どのCRMPsも時空間的に調節された発現パターンを示す<ref name="ref2" />(表1) 。[[CRMP2]]は最も広範な発現パターンを示し、大多数の神経細胞の発生初期において発現する<ref name="ref6"><pubmed> 8815901 </pubmed></ref>。CRMP1とCRMP4は神経細胞の遊走後に発現し、胎生後期から出生後初期において最も発現量が高くなり、その後発現量が低下する<ref name="ref6" />。CRMP3の発現は、主に[[小脳]]の[[顆粒細胞]]に限られている<ref name="ref6" />。CRMP5の発現は[[新皮質]]、[[海馬]]、[[脊髄]]に顕著であり、[[有糸分裂]]後の神経細胞で発現する<ref name="ref7"><pubmed> 11549731 </pubmed></ref>。  
 [[ラット]]においては、初期胚から[[wj:有糸分裂|有糸分裂]]後の神経細胞において強く発現し、生後1週間前後でピークに達し、その後は発現量が低下する。どのCRMPsも時空間的に調節された発現パターンを示す<ref name="ref2" />([[表1]]) 。[[CRMP2]]は最も広範な発現パターンを示し、大多数の神経細胞の発生初期において発現する<ref name="ref6"><pubmed> 8815901 </pubmed></ref>。CRMP1とCRMP4は神経細胞の遊走後に発現し、胎生後期から出生後初期において最も発現量が高くなり、その後発現量が低下する<ref name="ref6" />。CRMP3の発現は、主に[[小脳]]の[[顆粒細胞]]に限られている<ref name="ref6" />。CRMP5の発現は[[新皮質]]、[[海馬]]、[[脊髄]]に顕著であり、[[有糸分裂]]後の神経細胞で発現する<ref name="ref7"><pubmed> 11549731 </pubmed></ref>。  


{| cellspacing="1" cellpadding="1" border="1"
{| cellspacing="1" cellpadding="1" border="1"
109行目: 109行目:
=== 成体の神経系  ===
=== 成体の神経系  ===


 ラットの成体脳において、CRMPsは劇的に発現量が低下し、主に可塑性や[[神経新生]]を保持する領域([[嗅球]]、海馬、小脳)で発現が認められる。CRMP1は主に小脳の[[プルキンエ細胞]]において発現する<ref name="ref6" />。CRMP2は成体脳においてはCRMPの中でも発現量が最も高く、嗅覚系や小脳、海馬で多く検出されている<ref name="ref2" /><ref name="ref6" />。CRMP3は小脳[[顆粒細胞]]や[[下オリーブ核]]、[[海馬歯状回]]で発現する<ref name="ref2" /><ref name="ref6" />。CRMP4は成体脳においてはCRMPsの中でも発現量が最も低く、嗅球や海馬、小脳の[[内顆粒層]]におけるわずかな細胞で発現が確認されている<ref name="ref2" /><ref name="ref8"><pubmed> 10931485 </pubmed></ref>。CRMP5は嗅球や[[嗅上皮]]における有糸分裂後の神経細胞、海馬[[歯状回]]で発現しており、また、[[末梢神経]]の軸索や[[感覚神経]]でも発現していることが報告されている<ref name="ref2" />。  
 ラットの成体脳において、CRMPsは劇的に発現量が低下し、主に可塑性や[[神経新生]]を保持する領域([[嗅球]]、海馬、小脳)で発現が認められる。
 
 CRMP1は主に小脳の[[プルキンエ細胞]]において発現する<ref name="ref6" />
 
 CRMP2は成体脳においてはCRMPの中でも発現量が最も高く、嗅覚系や小脳、海馬で多く検出されている<ref name="ref2" /><ref name="ref6" />
 
 CRMP3は小脳[[顆粒細胞]]や[[下オリーブ核]]、[[海馬歯状回]]で発現する<ref name="ref2" /><ref name="ref6" />
 
 CRMP4は成体脳においてはCRMPsの中でも発現量が最も低く、嗅球や海馬、小脳の[[内顆粒層]]におけるわずかな細胞で発現が確認されている<ref name="ref2" /><ref name="ref8"><pubmed> 10931485 </pubmed></ref>
 
 CRMP5は嗅球や[[嗅上皮]]における有糸分裂後の神経細胞、海馬[[歯状回]]で発現しており、また、[[末梢神経]]の軸索や[[感覚神経]]でも発現していることが報告されている<ref name="ref2" />。  


== 機能  ==
== 機能  ==
117行目: 127行目:
[[Image:CRMP fig1.jpg|thumb|right|300px|'''図1 CRMP1を介したシグナル伝達機構''']]  
[[Image:CRMP fig1.jpg|thumb|right|300px|'''図1 CRMP1を介したシグナル伝達機構''']]  


 CRMP1は、生後1日目のラット[[大脳皮質]]で強く発現する<ref name="ref6" />。ノックアウトマウスの解析から、CRMP1は大脳皮質神経細胞の遊走を制御することが報告されている<ref name="ref9"><pubmed> 17182786 </pubmed></ref>。CRMP1は[[Fyn]]の基質であり、[[リーリン]](Reelin)が受容体([[VLDLR]]/ApoER2)に結合すると、[[Fyn]]によりCRMP1と[[Dab1]]が[[チロシンリン酸化]]され、これらが相乗的にシグナルのメディエーターとして働き、神経細胞の遊走を制御すると考えられている<ref name="ref9" />(図1)。また、[[Cdk5]]によるCRMP1のリン酸化が、Sema3Aによる[[樹状突起スパイン]]の形成に関与することが報告されている<ref name="ref10"><pubmed> 18003833 </pubmed></ref>(図1)。  
 CRMP1は、生後1日目のラット[[大脳皮質]]で強く発現する<ref name="ref6" />。CRMP1ノックアウトマウスでは、小脳の顆粒細胞の増殖とアポトーシスの減少 (Charrier et al., 2006) 、大脳皮質神経細胞の遊走の低下<ref name="ref9"><pubmed> 17182786 </pubmed></ref>。、スパイン形成の障害 (Yamashita et al., 2007) を示すことが報告されている('''表2''')。
 
 CRMP1は[[Fyn]]の基質であり、[[リーリン]](Reelin)が受容体([[VLDLR]]/ApoER2)に結合すると、[[Fyn]]によりCRMP1と[[Dab1]]が[[チロシンリン酸化]]され、これらが相乗的にシグナルのメディエーターとして働き、神経細胞の遊走を制御すると考えられている<ref name="ref9" />(図1)。また、[[Cdk5]]によるCRMP1のリン酸化が、Sema3Aによる[[樹状突起スパイン]]の形成に関与することが報告されている<ref name="ref10"><pubmed> 18003833 </pubmed></ref>(図1)。  


=== CRMP2  ===
=== CRMP2  ===
133行目: 145行目:


 CRMP2の[[カルシウム|Ca<sup>2+</sup>]]ホメオスタシスへの関与としては、CRMP2が直接的に[[CaV2.2]](N型電位依存性[[カルシウムチャネル]])と結合すると、[[シナプス前部]]の膜表面でのCaV2.2の局在が増加してCa<sup>2+</sup>の流入が増加することにより、[[神経伝達物質]]の放出が増加することが報告されている<ref name="ref20"><pubmed> 19755421 </pubmed></ref>。  
 CRMP2の[[カルシウム|Ca<sup>2+</sup>]]ホメオスタシスへの関与としては、CRMP2が直接的に[[CaV2.2]](N型電位依存性[[カルシウムチャネル]])と結合すると、[[シナプス前部]]の膜表面でのCaV2.2の局在が増加してCa<sup>2+</sup>の流入が増加することにより、[[神経伝達物質]]の放出が増加することが報告されている<ref name="ref20"><pubmed> 19755421 </pubmed></ref>。  
 Cdk5の主要なリン酸化部位 (S522) に変異を入れた非活性型CRMP2 (CRMP2 S522A) のノックインマウス(CRMP2KI/KI)の解析によると、CRMP1-/-バックグラウンドにおいて樹状突起パターンに異常が見られることが報告された (Yamashita et al., 2012)('''表2''')。また、CRMP4-/-バックグラウンドのCRMP2KI/KIにおいて、海馬CA1錐体ニューロンの樹状突起の分岐が増加することが報告された (Niisato et al., 2013)('''表2''') 。これらより、樹状突起パターンや樹状突起の分岐にCRMP2のリン酸化が重要な役割をしていることが示唆されている。


=== CRMP3  ===
=== CRMP3  ===


 CRMP3ノックアウトマウスの海馬において、樹状突起の長さや枝分かれの数が減少することが報告された<ref name="ref21"><pubmed> 17785607 </pubmed></ref>。さらに、樹状突起スパインの形成も異常になることから、CRMP3は樹状突起の形成や樹状突起スパインの成熟に関与すると考えられている<ref name="ref21" />。また、CRMP3のその他の役割として、微小管の重合を阻害することにより神経突起の伸長を抑制することや、[[興奮毒性]]のある[[グルタミン酸]]で処理した神経細胞において、神経細胞が壊死する前の[[核凝縮]]時に[[カルパイン]]により切断されたCRMP3が核膜孔を通り核内に移行することで核凝縮に関わる可能性が示唆されている<ref name="ref22"><pubmed> 19559021 </pubmed></ref>。  
 CRMP3ノックアウトマウスの海馬において、樹状突起の長さや枝分かれの数が減少することが報告された<ref name="ref21"><pubmed> 17785607 </pubmed></ref>(表2)。また、CRMP3を過剰発現させると、樹状突起の長さや枝分かれの数が減少や、プリオンタンパク質の過剰発現による樹状突起の委縮を抑制する効果があることが報告された (Quach et al., 2011)(表2) 。CRMP3のC末端が樹状突起形成に関与していることが示唆された (Quach et al., 2013) 。さらに、樹状突起スパインの形成も異常になることから、CRMP3は樹状突起の形成や樹状突起スパインの成熟に関与すると考えられている<ref name="ref21" />。また、CRMP3のその他の役割として、微小管の重合を阻害することにより神経突起の伸長を抑制することや、[[興奮毒性]]のある[[グルタミン酸]]で処理した神経細胞において、神経細胞が壊死する前の[[核凝縮]]時に[[カルパイン]]により切断されたCRMP3が核膜孔を通り核内に移行することで核凝縮に関わる可能性が示唆されている<ref name="ref22"><pubmed> 19559021 </pubmed></ref>。  


=== CRMP4  ===
=== CRMP4  ===
142行目: 156行目:
 CRMP4をノックアウトすると、海馬[[CA1]]の[[錐体細胞]]の[[尖端樹状突起]]が二分枝化する表現型が増加し<ref name="ref23"><pubmed> 22234963 </pubmed></ref>、これはSema3Aのノックアウトマウスにおいても観察される<ref name="ref5" />。Sema3Aにより樹状突起の伸長や枝分かれが促進されるが、CRMP4ノックアウトマウスの培養海馬神経細胞においては、Sema3Aを加えてもこれらの促進が認められない<ref name="ref23" />。これらのことから、Sema3AシグナルがCRMP4に伝わり、海馬CA1における錐体細胞の尖端樹状突起の二分枝化を負に制御することが示唆されている<ref name="ref5" /><ref name="ref23" />。  
 CRMP4をノックアウトすると、海馬[[CA1]]の[[錐体細胞]]の[[尖端樹状突起]]が二分枝化する表現型が増加し<ref name="ref23"><pubmed> 22234963 </pubmed></ref>、これはSema3Aのノックアウトマウスにおいても観察される<ref name="ref5" />。Sema3Aにより樹状突起の伸長や枝分かれが促進されるが、CRMP4ノックアウトマウスの培養海馬神経細胞においては、Sema3Aを加えてもこれらの促進が認められない<ref name="ref23" />。これらのことから、Sema3AシグナルがCRMP4に伝わり、海馬CA1における錐体細胞の尖端樹状突起の二分枝化を負に制御することが示唆されている<ref name="ref5" /><ref name="ref23" />。  


 また、CRMP4を[[ノックダウン]]した大脳皮質神経細胞や海馬神経細胞において、樹状突起の分枝点の数が増加したことから、CRMP4は樹状突起の分枝を抑制する可能性が示唆されている<ref name="ref23" />。  
 また、CRMP4を[[ノックダウン]]した大脳皮質神経細胞や海馬神経細胞において、樹状突起の分枝点の数が増加したことから、CRMP4は樹状突起の分枝を抑制する可能性が示唆されている<ref name="ref23" />(表2)。 (<u>編集部コメント:この記述は次の新しく加わった記述と重なっていると思います</u>)
 
 CRMP4 mRNAのマウス脳での詳細な発現分布、発現強度の生後変化が報告された (Tsutiya and Ritsuko, 2012) 。視床下部 (AVPV) でのCRMP4の発現が、視床下部性差形成時期において雌雄で異なり、CRMP4はメス特異的にAVPVに存在するドーパミンニューロン (THニューロン) の数を調節することが報告された (Iwakura et al., 2013) 。CRMP4欠損仔マウスの嗅球において 、グルタミン酸受容体1 (GluR1) とGluR2の発現が増加すること、嗅球ニューロンの興奮が亢進すること、匂い識別能力が低下することが示された (Tsutiya et al., 2015)(表2)。
 
 CRMP4欠損により生後初期仔マウス嗅球の僧帽細胞の樹状突起伸長が促進することが示された (Tsutiya et al., 2016)(表2)。CRMP4の欠損およびノックダウンした神経細胞では樹状突起伸長が促進され、CRMP4を過剰発現した神経細胞では樹状突起伸長が抑制されたことから、CRMP4が樹状突起伸長に対して抑制的に機能することが示唆されている (Tsutiya et al., 2016)。CRMP4欠損細胞では、軸索伸長と成長円錐形成の阻害が見られることが報告されている (Khazaei et al., 2014)(表2) 。CRMP4は微小管重合とF-アクチンの束化を促進することにより、成長円錐形成を制御することが示唆されている (Khazaei et al., 2014)


=== CRMP5  ===
=== CRMP5  ===
150行目: 168行目:
 小脳のプルキンエ細胞において、CRMP5はシナプス可塑性に重要な役割を果たすことが報告されている<ref name="ref26"><pubmed> 21289187 </pubmed></ref>。プルキンエ細胞におけるCRMP5の発現は、出生後21日から28日において確認されており、CRMP5をノックアウトすると、プルキンエ細胞の細胞体のサイズや樹状突起の長さが減少する。さらに、[[平行線維]]とプルキンエ細胞間の[[興奮性シナプス伝達]]の[[長期抑圧]](LTD;long-term depression)の誘導が阻害されることが報告されている<ref name="ref26" />。プルキンエ細胞の樹状突起の形態制御にはBDNF-TrkBシグナルが関与する可能性が示唆されている<ref name="ref5" />。CRMP5ノックアウトマウスのプルキンエ細胞におけるBDNFの効果はまだ解析されていないが、ノックアウトマウスの培養海馬神経細胞において、BDNFにより誘導される樹状突起伸長の促進が減弱し、樹状突起の形態も損なわれる。さらに、TrkBによりCRMP5がチロシンリン酸化されることも明らかになり、BDNF-TrkBシグナルがCRMP5に伝わり、プルキンエ細胞の樹状突起の形態の制御に関与する可能性が示唆されている<ref name="ref5" /><ref name="ref26" />。  
 小脳のプルキンエ細胞において、CRMP5はシナプス可塑性に重要な役割を果たすことが報告されている<ref name="ref26"><pubmed> 21289187 </pubmed></ref>。プルキンエ細胞におけるCRMP5の発現は、出生後21日から28日において確認されており、CRMP5をノックアウトすると、プルキンエ細胞の細胞体のサイズや樹状突起の長さが減少する。さらに、[[平行線維]]とプルキンエ細胞間の[[興奮性シナプス伝達]]の[[長期抑圧]](LTD;long-term depression)の誘導が阻害されることが報告されている<ref name="ref26" />。プルキンエ細胞の樹状突起の形態制御にはBDNF-TrkBシグナルが関与する可能性が示唆されている<ref name="ref5" />。CRMP5ノックアウトマウスのプルキンエ細胞におけるBDNFの効果はまだ解析されていないが、ノックアウトマウスの培養海馬神経細胞において、BDNFにより誘導される樹状突起伸長の促進が減弱し、樹状突起の形態も損なわれる。さらに、TrkBによりCRMP5がチロシンリン酸化されることも明らかになり、BDNF-TrkBシグナルがCRMP5に伝わり、プルキンエ細胞の樹状突起の形態の制御に関与する可能性が示唆されている<ref name="ref5" /><ref name="ref26" />。  


== CRMPと神経疾患 ==
 CRMP5は、ミエリン化されてないシュワン細胞で発現し、ミエリン化されたシュワン細胞では発現が低下することが報告されている (Camdessanché et al., 2012) 。CRMP5ノックアウト細胞では、軸索とシュワン細胞の相互作用に異常が見られることから、CRMP5は軸索とシュワン細胞の相互作用を調節していることが示唆されている (Camdessanché et al., 2012)(表2)。
 
== 疾患との関わり ==
=== 神経疾患 ===
 中枢神経系では、特定領域の神経変性が[[アルツハイマー病]]や[[パーキンソン病]]などの[[神経変性疾患]]の発症に重要な役割を果たしている。
 
 これまでの研究により、CRMP2がアルツハイマー病の発症に関与している可能性が示唆されている。3F4と呼ばれる抗リン酸化CRMP2抗体が、粗精製した過剰にリン酸化されたタウの集合体([[神経原線維変化]])と反応することが報告された<ref name="ref27"><pubmed> 9545313 </pubmed></ref>。この抗体はCdk5やGSK3-betaによりリン酸化されたCRMP2を認識することから、CRMP2のリン酸化がアルツハイマー病の原因因子の一つである可能性がある<ref name="ref28"><pubmed> 10757975 </pubmed></ref>。
 
 さらに、リン酸化CRMP2がアルツハイマー病の脳やアルツハイマー病の疾患モデルマウスにおいて増加することが確認されている<ref name="ref29"><pubmed> 17683481 </pubmed></ref>。また、アルツハイマー病の海馬CA1領域においてSema3A陽性神経細胞の数が増加することが報告されていることから<ref name="ref30"><pubmed> 15485501 </pubmed></ref>、アルツハイマー病の脳において、増加したSema3Aのシグナル伝達によりCRMP2のリン酸化が促進される可能性が考えられる。
 
 近年、アルツハイマー病以外に、CRMPsが[[統合失調症]]の発症にも関与することが示唆されており<ref name="ref5" />、これらの病態解明や治療法の開発を含め、さらなる研究が期待される。 <u>(この文章は旧版の最後の文章ですが、新しい部分が加わったため浮いています。消しても良いかと思います。)</u>
 
 CRPMノックアウトマウスの解析において、神経発生に関する表現型だけでなく、行動異常や疾患に関連する表現型も観察されている(表2)(Nagai et al., 2016) 。CRMP1ノックアウトマウスの行動解析により、高活動性、空間学習と記憶の障害、プレパルス抑制などの統合失調症に見られる症状に異常が見られた (Yamashita et al., 2013)(表2)。
 
 非活性型CRMP2 (CRMP2 S522A) のノックインマウスでは、中枢神経に障害を受けた際に起こる炎症と瘢痕形成に抑制効果が見られた (Nagai et al., 2016)(表2) 。CRMP2ノックアウトマウスの包括的な行動解析により、高活動性、感情行動障害、社会性低下などの神経精神疾患に見られる症状に異常が見られた (Nakamura et al., 2016)(表2) 。
 
 CRMP4ノックアウトマウスでは、中枢神経に障害を受けた際に起こる炎症と瘢痕形成に抑制効果が見られ、障害を受けた後の運動性の回復に改善が見られることが報告された (Nagai et al., 2015)(表2)。パーキンソン病モデルマウスにおいて、CRMP4の欠失はドーパミン作動性神経細胞死の遅延と炎症抑制を示すことが報告されている(Tonouchi et al., 2016)(表2)。
 
=== その他の疾患 ===
 腫瘍組織におけるCRMPの発現の変化も報告されている(表3)(FEI et al., 2014) 。
 
 肺がん細胞において、CRMP1の発現は増加し、通常より長いCRMP1のアイソフォーム(LCRMP1)は低下する (Pan et al., 2011; Shih et al., 2001)(表3)。
 
 CRMP2の発現は、大腸がん、肺がんで上昇し、乳がんで低下することが報告されている (Oliemuller et al., 2013; Shimada et al., 2014; Wu et al., 2008)(表3)。乳がんにおいて、全体のCRMP2は低下しているが、核に移行したリン酸化CRMP2は増加しており、CRMP2のリン酸化は乳がんの進行に関与している可能性が示唆されている (Shimada et al., 2014)(表3) 。
 
 CRMP4の発現は、前立腺がんで低下し、膵臓がんや神経芽腫では上昇していることが報告されている (Choi et al., 2005; Gao et al., 2010; Hiroshima et al., 2013; Tan et al., 2013)(表3) 。


 中枢神経系では、特定領域の神経変性が[[アルツハイマー病]]や[[パーキンソン病]]などの[[神経変性疾患]]の発症に重要な役割を果たしている。これまでの研究により、CRMP2がアルツハイマー病の発症に関与している可能性が示唆されている。3F4と呼ばれる抗リン酸化CRMP2抗体が、粗精製した過剰にリン酸化されたタウの集合体([[神経原線維変化]])と反応することが報告された<ref name="ref27"><pubmed> 9545313 </pubmed></ref>。この抗体はCdk5やGSK3-betaによりリン酸化されたCRMP2を認識することから、CRMP2のリン酸化がアルツハイマー病の原因因子の一つである可能性がある<ref name="ref28"><pubmed> 10757975 </pubmed></ref>。さらに、リン酸化CRMP2がアルツハイマー病の脳やアルツハイマー病の疾患モデルマウスにおいて増加することが確認されている<ref name="ref29"><pubmed> 17683481 </pubmed></ref>。また、アルツハイマー病の海馬CA1領域においてSema3A陽性神経細胞の数が増加することが報告されていることから<ref name="ref30"><pubmed> 15485501 </pubmed></ref>、アルツハイマー病の脳において、増加したSema3Aのシグナル伝達によりCRMP2のリン酸化が促進される可能性が考えられる。近年、アルツハイマー病以外に、CRMPsが[[統合失調症]]の発症にも関与することが示唆されており<ref name="ref5" />、これらの病態解明や治療法の開発を含め、さらなる研究が期待される。
 CRMP5の発現は、神経内分泌肺がんや膠芽腫で上昇していることが報告されている (Liang et al., 2005; Meyronet et al., 2008)(表3)。がん組織における発現量の違いと病因の関係の理解やがん診断のためのバイオマーカーとしての利用などが期待される。


== 関連項目  ==
== 関連項目  ==

案内メニュー