「CRMP」の版間の差分

ナビゲーションに移動 検索に移動
992 バイト除去 、 2017年6月6日 (火)
編集の要約なし
編集の要約なし
141行目: 141行目:
 CRMP2は培養海馬神経細胞の伸長中の軸索に濃縮し、CRMP2の過剰発現により複数本の軸索(過剰軸索)が誘導される<ref name="ref12"><pubmed> 11477421 </pubmed></ref>。誘導された過剰軸索は、[[シナプトフィジン]]陽性のシナプス末端を持つことから、CRMP2は成熟した軸索の形成を誘導し、維持すると考えられる<ref name="ref4" /><ref name="ref12" />。さらに、過剰発現により[[樹状突起]]が軸索に変化したことから、過剰発現されたCRMP2が未成熟な神経突起だけでなく、樹状突起にも軸索のアイデンティティを与え得ることが示唆された<ref name="ref4" /><ref name="ref12" />。  
 CRMP2は培養海馬神経細胞の伸長中の軸索に濃縮し、CRMP2の過剰発現により複数本の軸索(過剰軸索)が誘導される<ref name="ref12"><pubmed> 11477421 </pubmed></ref>。誘導された過剰軸索は、[[シナプトフィジン]]陽性のシナプス末端を持つことから、CRMP2は成熟した軸索の形成を誘導し、維持すると考えられる<ref name="ref4" /><ref name="ref12" />。さらに、過剰発現により[[樹状突起]]が軸索に変化したことから、過剰発現されたCRMP2が未成熟な神経突起だけでなく、樹状突起にも軸索のアイデンティティを与え得ることが示唆された<ref name="ref4" /><ref name="ref12" />。  


 CRMP2による軸索形成の分子メカニズムとして、[[微小管]]ダイナミクスの制御が報告されている。CRMP2は[[チューブリン]]ヘテロ二量体と結合して微小管の重合を促進すること、また、この微小管重合活性がCRMP2により誘導される軸索伸長に必要であることが明らかになっている<ref name="ref13"><pubmed> 12134159 </pubmed></ref>。CRMP2のチューブリンへの結合はダイナミックに制御されており、Sema3A受容体である[[ニューロピリン]]-1(NP-1)や[[プレキシン]]A(PlexA)が[[Rac]]1を活性化し、下流の[[キナーゼ]]に影響を与え、最終的に[[GSK-3 beta]]が活性化され、CRMP2がリン酸化を受ける<ref name="ref11" /><ref name="ref14"><pubmed> 15652488 </pubmed></ref>。リン酸化されたCRMP2はチューブリンへのアフィニティーが弱くなり、軸索の退縮が促進される<ref name="ref14" />(図2)。逆に、[[ニューロトロフィン]]-3や[[脳由来神経成長因子]](BDNF)により[[GSK-3]] betaが阻害され、CRMP2のリン酸化が抑制されることで、軸索伸長が促進する<ref name="ref14" />(図2)。また、CRMP2の結合タンパク質として[[Numb]]が同定されており、CRMP2が軸索先端でNumbを介した[[L1]]の[[エンドサイトーシス]]およびリサイクリングに関与する可能性が示唆されている<ref name="ref15"><pubmed> 12942088 </pubmed></ref>。[[Rhoキナーゼ]]がCRMP2をリン酸化することにより、CRMP2がNumbと結合できなくなり、軸索伸長が阻害されることも報告されている<ref name="ref16">'''有村奈利子、木村俊秀、藤井佳代、貝淵弘三'''<br>RhoキナーゼによるCRMP-2のリン酸化とその活性制御について<br>''脳21'':2004 </ref>。  
 CRMP2による軸索形成の分子メカニズムとして、[[微小管]]ダイナミクスの制御が報告されている。CRMP2は[[チューブリン]]ヘテロ二量体と結合して微小管の重合を促進すること、また、この微小管重合活性がCRMP2により誘導される軸索伸長に必要であることが明らかになっている<ref name="ref13"><pubmed> 12134159 </pubmed></ref>。CRMP2のチューブリンへの結合はダイナミックに制御されており、Sema3A受容体である[[ニューロピリン]]-1(NP-1)や[[プレキシン]]A(PlexA)が[[Rac]]1を活性化し、下流の[[キナーゼ]]に影響を与え、最終的にGSK-3&beta;が活性化され、CRMP2がリン酸化を受ける<ref name="ref11" /><ref name="ref14"><pubmed> 15652488 </pubmed></ref>。リン酸化されたCRMP2はチューブリンへのアフィニティーが弱くなり、軸索の退縮が促進される<ref name="ref14" />(図2)。逆に、[[ニューロトロフィン]]-3や[[脳由来神経成長因子]](BDNF)によりGSK-3&beta;が阻害され、CRMP2のリン酸化が抑制されることで、軸索伸長が促進する<ref name="ref14" />(図2)。また、CRMP2の結合タンパク質として[[Numb]]が同定されており、CRMP2が軸索先端でNumbを介した[[L1]]の[[エンドサイトーシス]]およびリサイクリングに関与する可能性が示唆されている<ref name="ref15"><pubmed> 12942088 </pubmed></ref>。[[Rhoキナーゼ]]がCRMP2をリン酸化することにより、CRMP2がNumbと結合できなくなり、軸索伸長が阻害されることも報告されている<ref name="ref16">'''有村奈利子、木村俊秀、藤井佳代、貝淵弘三'''<br>RhoキナーゼによるCRMP-2のリン酸化とその活性制御について<br>''脳21'':2004 </ref>。  


 CRMP2は[[キネシン]]依存性[[軸索輸送]]にも関与する。CRMP2がチューブリンヘテロ二量体もしくは[[Sra-1]]をキネシン-1につなぎとめ、CRMP2/キネシン-1複合体がチューブリン二量体やSra-1/[[WAVE]]-1複合体の輸送を制御する<ref name="ref17"><pubmed> 16364893 </pubmed></ref><ref name="ref18"><pubmed> 16260607 </pubmed></ref>(図3)。また、[[Trk]]B/Slp1/[[Rab]]27複合体がCRMP2を介してキネシン-1に結合し、これらが順行性輸送されることが報告されている<ref name="ref19"><pubmed> 19460344 </pubmed></ref>(図3)。  
 CRMP2は[[キネシン]]依存性[[軸索輸送]]にも関与する。CRMP2がチューブリンヘテロ二量体もしくは[[Sra-1]]をキネシン-1につなぎとめ、CRMP2/キネシン-1複合体がチューブリン二量体やSra-1/[[WAVE]]-1複合体の輸送を制御する<ref name="ref17"><pubmed> 16364893 </pubmed></ref><ref name="ref18"><pubmed> 16260607 </pubmed></ref>(図3)。また、[[Trk]]B/Slp1/[[Rab]]27複合体がCRMP2を介してキネシン-1に結合し、これらが順行性輸送されることが報告されている<ref name="ref19"><pubmed> 19460344 </pubmed></ref>(図3)。  
156行目: 156行目:


 CRMP4をノックアウトすると、海馬[[CA1]]の[[錐体細胞]]の[[尖端樹状突起]]が二分枝化する表現型が増加し<ref name="ref23"><pubmed> 22234963 </pubmed></ref>、これはSema3Aのノックアウトマウスにおいても観察される<ref name="ref5" />。Sema3Aにより樹状突起の伸長や枝分かれが促進されるが、CRMP4ノックアウトマウスの培養海馬神経細胞においては、Sema3Aを加えてもこれらの促進が認められない<ref name="ref23" />。これらのことから、Sema3AシグナルがCRMP4に伝わり、海馬CA1における錐体細胞の尖端樹状突起の二分枝化を負に制御することが示唆されている<ref name="ref5" /><ref name="ref23" />。  
 CRMP4をノックアウトすると、海馬[[CA1]]の[[錐体細胞]]の[[尖端樹状突起]]が二分枝化する表現型が増加し<ref name="ref23"><pubmed> 22234963 </pubmed></ref>、これはSema3Aのノックアウトマウスにおいても観察される<ref name="ref5" />。Sema3Aにより樹状突起の伸長や枝分かれが促進されるが、CRMP4ノックアウトマウスの培養海馬神経細胞においては、Sema3Aを加えてもこれらの促進が認められない<ref name="ref23" />。これらのことから、Sema3AシグナルがCRMP4に伝わり、海馬CA1における錐体細胞の尖端樹状突起の二分枝化を負に制御することが示唆されている<ref name="ref5" /><ref name="ref23" />。  
 また、CRMP4を[[ノックダウン]]した大脳皮質神経細胞や海馬神経細胞において、樹状突起の分枝点の数が増加したことから、CRMP4は樹状突起の分枝を抑制する可能性が示唆されている<ref name="ref23" />('''表2''')。 (<u>編集部コメント:この記述は次の新しく加わった記述と重なっていると思います</u>)


 CRMP4 mRNAのマウス脳での詳細な発現分布、発現強度の生後変化が報告された <ref name=Tsutiya2012><pubmed>22816653</pubmed></ref>。視床下部 (AVPV) でのCRMP4の発現が、視床下部性差形成時期において雌雄で異なり、CRMP4はメス特異的にAVPVに存在するドーパミンニューロン (THニューロン) の数を調節することが報告された<ref name=Iwakura2013><pubmed>23420586</pubmed></ref>。CRMP4欠損仔マウスの嗅球において 、グルタミン酸受容体1 (GluR1) とGluR2の発現が増加すること、嗅球ニューロンの興奮が亢進すること、匂い識別能力が低下することが示された <ref name=Tsutiya2015><pubmed>26118640</pubmed></ref>('''表2''')。
 CRMP4 mRNAのマウス脳での詳細な発現分布、発現強度の生後変化が報告された <ref name=Tsutiya2012><pubmed>22816653</pubmed></ref>。視床下部 (AVPV) でのCRMP4の発現が、視床下部性差形成時期において雌雄で異なり、CRMP4はメス特異的にAVPVに存在するドーパミンニューロン (THニューロン) の数を調節することが報告された<ref name=Iwakura2013><pubmed>23420586</pubmed></ref>。CRMP4欠損仔マウスの嗅球において 、グルタミン酸受容体1 (GluR1) とGluR2の発現が増加すること、嗅球ニューロンの興奮が亢進すること、匂い識別能力が低下することが示された <ref name=Tsutiya2015><pubmed>26118640</pubmed></ref>('''表2''')。


 CRMP4欠損により生後初期仔マウス嗅球の僧帽細胞の樹状突起伸長が促進することが示された<ref name=Tsutiya2016><pubmed>26739921</pubmed></ref>
 CRM4欠損あるいはノックダウンした神経細胞では、樹状突起の分岐点の数が増加し、樹状突起伸長が促進されること、CRMP4を過剰発現した神経細胞では樹状突起伸長が抑制されることから、CRMP4は樹状突起の分岐および伸長を抑制することが示唆されている<ref name="ref23" /><ref name=Tsutiya2016><pubmed>26739921</pubmed></ref>
('''表2''')。CRMP4の欠損およびノックダウンした神経細胞では樹状突起伸長が促進され、CRMP4を過剰発現した神経細胞では樹状突起伸長が抑制されたことから、CRMP4が樹状突起伸長に対して抑制的に機能することが示唆されている<ref name=Tsutiya2016><pubmed>26739921</pubmed></ref>。CRMP4欠損細胞では、軸索伸長と成長円錐形成の阻害が見られることが報告されている<ref name=Khazaei2014><pubmed>25225289</pubmed></ref>('''表2''') 。CRMP4は微小管重合とF-アクチンの束化を促進することにより、成長円錐形成を制御することが示唆されている<ref name=Khazaei2014><pubmed>25225289</pubmed></ref>。
('''表2''')。CRMP4欠損細胞では、軸索伸長と成長円錐形成の阻害が見られることが報告されている<ref name=Khazaei2014><pubmed>25225289</pubmed></ref>('''表2''') 。CRMP4は微小管重合とF-アクチンの束化を促進することにより、成長円錐形成を制御することが示唆されている<ref name=Khazaei2014><pubmed>25225289</pubmed></ref>。


=== CRMP5  ===
=== CRMP5  ===
176行目: 174行目:
 中枢神経系では、特定領域の神経変性が[[アルツハイマー病]]や[[パーキンソン病]]などの[[神経変性疾患]]の発症に重要な役割を果たしている。
 中枢神経系では、特定領域の神経変性が[[アルツハイマー病]]や[[パーキンソン病]]などの[[神経変性疾患]]の発症に重要な役割を果たしている。


 これまでの研究により、CRMP2がアルツハイマー病の発症に関与している可能性が示唆されている。3F4と呼ばれる抗リン酸化CRMP2抗体が、粗精製した過剰にリン酸化されたタウの集合体([[神経原線維変化]])と反応することが報告された<ref name="ref27"><pubmed> 9545313 </pubmed></ref>。この抗体はCdk5やGSK3-betaによりリン酸化されたCRMP2を認識することから、CRMP2のリン酸化がアルツハイマー病の原因因子の一つである可能性がある<ref name="ref28"><pubmed> 10757975 </pubmed></ref>。
 これまでの研究により、CRMP2がアルツハイマー病の発症に関与している可能性が示唆されている。3F4と呼ばれる抗リン酸化CRMP2抗体が、粗精製した過剰にリン酸化されたタウの集合体([[神経原線維変化]])と反応することが報告された<ref name="ref27"><pubmed> 9545313 </pubmed></ref>。この抗体はCdk5やGSK3&beta;によりリン酸化されたCRMP2を認識することから、CRMP2のリン酸化がアルツハイマー病の原因因子の一つである可能性がある<ref name="ref28"><pubmed> 10757975 </pubmed></ref>。


 さらに、リン酸化CRMP2がアルツハイマー病の脳やアルツハイマー病の疾患モデルマウスにおいて増加することが確認されている<ref name="ref29"><pubmed> 17683481 </pubmed></ref>。また、アルツハイマー病の海馬CA1領域においてSema3A陽性神経細胞の数が増加することが報告されていることから<ref name="ref30"><pubmed> 15485501 </pubmed></ref>、アルツハイマー病の脳において、増加したSema3Aのシグナル伝達によりCRMP2のリン酸化が促進される可能性が考えられる。
 さらに、リン酸化CRMP2がアルツハイマー病の脳やアルツハイマー病の疾患モデルマウスにおいて増加することが確認されている<ref name="ref29"><pubmed> 17683481 </pubmed></ref>。また、アルツハイマー病の海馬CA1領域においてSema3A陽性神経細胞の数が増加することが報告されていることから<ref name="ref30"><pubmed> 15485501 </pubmed></ref>、アルツハイマー病の脳において、増加したSema3Aのシグナル伝達によりCRMP2のリン酸化が促進される可能性が考えられる。
 近年、アルツハイマー病以外に、CRMPsが[[統合失調症]]の発症にも関与することが示唆されており<ref name="ref5" />、これらの病態解明や治療法の開発を含め、さらなる研究が期待される。 <u>(この文章は旧版の最後の文章ですが、新しい部分が加わったため浮いています。消しても良いかと思います。)</u>


 CRPMノックアウトマウスの解析において、神経発生に関する表現型だけでなく、行動異常や疾患に関連する表現型も観察されている('''表2''')<ref name=Nagai2016><pubmed>26795088</pubmed></ref> 。CRMP1ノックアウトマウスの行動解析により、高活動性、空間学習と記憶の障害、プレパルス抑制などの統合失調症に見られる症状に異常が見られた<ref name=Yamashita2013><pubmed>24409129</pubmed></ref>('''表2''')。
 CRPMノックアウトマウスの解析において、神経発生に関する表現型だけでなく、行動異常や疾患に関連する表現型も観察されている('''表2''')<ref name=Nagai2016><pubmed>26795088</pubmed></ref> 。CRMP1ノックアウトマウスの行動解析により、高活動性、空間学習と記憶の障害、プレパルス抑制などの統合失調症に見られる症状に異常が見られた<ref name=Yamashita2013><pubmed>24409129</pubmed></ref>('''表2''')。
262行目: 258行目:
|   大腸がん||増加||<ref name=Wu2008><pubmed>18203259</pubmed></ref>
|   大腸がん||増加||<ref name=Wu2008><pubmed>18203259</pubmed></ref>
|-
|-
|rowspan=2|   肺がん||増加 ||<ref name=Oliemuller2013><pubmed>23023514</pubmed></ref>
|rowspan=2|   肺がん||増加 || rowspan=2|<ref name=Oliemuller2013><pubmed>23023514</pubmed></ref>
|-
|-
|増加 (核P-CRMP2)||<u>編集部コメント:上の罫線は取ったほうがいいでしょうか。</u>
|増加 (核P-CRMP2)
|-
|-
|rowspan=2|   乳がん||減少 ||<ref name=Shimada2014><pubmed>23381229</pubmed></ref>
|rowspan=2|   乳がん||減少 || rowspan=2|<ref name=Shimada2014><pubmed>23381229</pubmed></ref>
|-
|-
|増加 (核P-CRMP2)||
|増加 (核P-CRMP2)
|-
|-
| colspan=3|'''CRMP4'''
| colspan=3|'''CRMP4'''
282行目: 278行目:
|   神経内分泌肺がん||増加||<ref name=Meyronet2008><pubmed>18769332</pubmed></ref>
|   神経内分泌肺がん||増加||<ref name=Meyronet2008><pubmed>18769332</pubmed></ref>
|-
|-
|rowspan=2|   膠芽腫||増加||<ref name=Liang2005><pubmed>15827123</pubmed></ref>
|rowspan=2|   膠芽腫||増加|| rowspan=2|<ref name=Liang2005><pubmed>15827123</pubmed></ref>
|-
|-
|増加 (核P-CRMP2)||
|増加 (核P-CRMP2)
|-
|-
|}
|}

案内メニュー