「カルシウムキレート剤」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
131行目: 131行目:
}}
}}
===1,2-ビス(o-アミノフェノキシド)エタン-N,N,N',N'-テトラ酢酸(1,2-bis-(o-Aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid:BAPTA)===
===1,2-ビス(o-アミノフェノキシド)エタン-N,N,N',N'-テトラ酢酸(1,2-bis-(o-Aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid:BAPTA)===
EGTAの誘導体として1980年に[[wikipedia:ja:ロジャー・Y・チエン|Roger Tsien]](1952-2016)によって開発された。細胞内Ca<sup>2+</sup>測定に用いる低分子カルシウム指示薬はカルシウムキレート剤がその母核化合物となっているが、EGTA(およびその誘導体のカルシウム指示薬Quin2)はそのpH依存性が問題であった。また高いpKa(>8)値に起因するCa<sup>2+</sup>との遅い結合速度も時間分解能を高める上で不都合であった。よりすぐれたカルシウム指示薬の開発にあたって彼は、EGTAで窒素原子と酸素原子をつないでいるメチレン基をベンゼン環へ置換することですべての配位子の[[PKA|pKa]]を6.5以下にし、pH7付近での性質を安定させることに成功した<ref name=Tsien><pubmed> 6770893 </pubmed></ref>(図2)。こうしてできたキレート剤がBAPTAであり、Fura2に続く多くの低分子カルシウム指示薬の母核化合物となった。細胞内の生理的Ca<sup>2+</sup>濃度(0.1 nM~1 mM)では、BAPTAとCa<sup>2+</sup>は1:1で結合する<ref name=Tsien />。解離定数は220 nMでEGTAと同等であるが、結合速度定数は4.0 × 10<sup>8</sup> M<sup>-1</sup>sec<sup>-1</sup>とEGTAに比べて50~100倍速い<ref name=Naraghi />。たとえばイカの巨大[[シナプス前]]末端からの神経伝達物質放出はEGTAでは抑制されないがBAPTAで抑制されることからシナプス前末端内におけるCa<sup>2+</sup>の源([[カルシウムチャネル]])とCa<sup>2+</sup>の受容器([[シナプス小胞]]のCa<sup>2+</sup>センサー)の距離が近いことを反映していると考えられる<ref><pubmed> 1675264 </pubmed></ref>。このように、結合速度定数の異なるEGTAとBAPTAによる生理現象の抑制率を比較定量することによって、生理現象に関わる[[カルシウムドメイン]]のサイズを推定することができる<ref><pubmed> 9539117 </pubmed></ref><ref>'''Yukihiro Nakamura, Maria Reva, David A DiGregorio'''<br>Variations in Ca<sup>2+</sup> influx can alter Ca<sup>2+</sup>-chelator-based estimates of Ca<sup>2+</sup> channel-synaptic vesicle coupling distance.<br>J. Neurosci.: 2018 [https://doi.org/10.1523/JNEUROSCI.2061-17.2018 DOI]</ref>。<br>
EGTAの誘導体として1980年に[[wikipedia:ja:ロジャー・Y・チエン|Roger Tsien]](1952-2016)によって開発された。細胞内Ca<sup>2+</sup>測定に用いる低分子カルシウム指示薬はカルシウムキレート剤がその母核化合物となっているが、EGTA(およびその誘導体のカルシウム指示薬Quin2)はそのpH依存性が問題であった。また高いpKa(>8)値に起因するCa<sup>2+</sup>との遅い結合速度も時間分解能を高める上で不都合であった。よりすぐれたカルシウム指示薬の開発にあたって彼は、EGTAで窒素原子と酸素原子をつないでいるメチレン基をベンゼン環へ置換することですべての配位子の[[PKA|pKa]]を6.5以下にし、pH7付近での性質を安定させることに成功した<ref name=Tsien><pubmed> 6770893 </pubmed></ref>(図2)。こうしてできたキレート剤がBAPTAであり、Fura2に続く多くの低分子カルシウム指示薬の母核化合物となった。細胞内の生理的Ca<sup>2+</sup>濃度(0.1 nM~1 mM)では、BAPTAとCa<sup>2+</sup>は1:1で結合する<ref name=Tsien />。解離定数は220 nMでEGTAと同等であるが、結合速度定数は4.0 × 10<sup>8</sup> M<sup>-1</sup>sec<sup>-1</sup>とEGTAに比べて50~100倍速い<ref name=Naraghi />。たとえばイカの巨大[[シナプス前]]末端からの神経伝達物質放出はEGTAでは抑制されないがBAPTAで抑制されることからシナプス前末端内におけるCa<sup>2+</sup>の源([[カルシウムチャネル]])とCa<sup>2+</sup>の受容器([[シナプス小胞]]のCa<sup>2+</sup>センサー)の距離が近いことを反映していると考えられる<ref><pubmed> 1675264 </pubmed></ref>。このように、結合速度定数の異なるEGTAとBAPTAによる生理現象の抑制率を比較定量することによって、生理現象に関わる[[カルシウムドメイン]]のサイズを推定することができる<ref><pubmed> 9539117 </pubmed></ref><ref name=Nakamura><pubmed> 29563180 </pubmed></ref>。<br>
細胞外から投与して細胞内Ca<sup>2+</sup>をキレートするときには、エステル基をつけて細胞膜の透過性を高めたBAPTA-AMが利用される。
細胞外から投与して細胞内Ca<sup>2+</sup>をキレートするときには、エステル基をつけて細胞膜の透過性を高めたBAPTA-AMが利用される。
[[Image:CaChelator figure2.png|none|thumb|200px|'''図2.各種Ca<sup>2+</sup>錯体の条件定数のpH依存性'''<br>生理的pH(7)付近における曲線の傾きに着目。(株)同仁化学研究所の[http://dominoweb.dojindo.co.jp/goodsr7.nsf/View_Display/B019?OpenDocument 製品情報]より許可を得て転載]]
[[Image:CaChelator figure2.png|none|thumb|200px|'''図2.各種Ca<sup>2+</sup>錯体の条件定数のpH依存性'''<br>生理的pH(7)付近における曲線の傾きに着目。(株)同仁化学研究所の[http://dominoweb.dojindo.co.jp/goodsr7.nsf/View_Display/B019?OpenDocument 製品情報]より許可を得て転載]]
29

回編集

案内メニュー