「間脳の発生」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
13行目: 13行目:
== 脊椎動物の成体の間脳形態 ==
== 脊椎動物の成体の間脳形態 ==
間脳がその後方の視蓋前域で中脳と接し、前方では視神経交叉のところで終脳と接していることについては、現在知られている全ての脊椎動物で共通している。一般的な神経解剖学の教科書では哺乳類の間脳は比較的小さな視床上部、巨大な視床複合体(以下、視床と呼ぶ)、腹側視床、視床下部が区別される。ただし、後に述べるようにこの区分けは発生学的知見などを基に提唱されている領域とは合致しない部分がある。
間脳がその後方の視蓋前域で中脳と接し、前方では視神経交叉のところで終脳と接していることについては、現在知られている全ての脊椎動物で共通している。一般的な神経解剖学の教科書では哺乳類の間脳は比較的小さな視床上部、巨大な視床複合体(以下、視床と呼ぶ)、腹側視床、視床下部が区別される。ただし、後に述べるようにこの区分けは発生学的知見などを基に提唱されている領域とは合致しない部分がある。
 視床上部は手綱核群、上生体(松果体)、視蓋前域などから構成される(視蓋前域を中脳に含める場合もある)。基底核や辺縁系と連絡する手綱核群は、手綱交連によって互いに連絡している。多くの脊椎動物では、手綱核の背側に光受容やサーカディアンリズムにかかわる上生体(松果体)が発生する。これはヒトでは単一の構造であるが、脊椎動物のいくつかの系統では上生体の他に、副松果体(parapineal organ;魚類)、前頭器官(pineal organ; 両生類)、頭頂眼(parietal eye;爬虫類)が生じる<ref>'''Grande L, Liem KF, Walker WF'''<br>Functional anatomy of vertebrates: An Evolutionary Perspective, Third edition. Chapter 12<br>''Harcourt college publishers, Florida'':2000</ref><ref>'''保 智己'''<br>『見える光,見えない光』(寺北明久・蟻川謙太郎 編) pp. 135-153.<br>'' 共立出版(東京)'':2009</ref>。これらは上生体と共に松果体複合体と呼ばれている。また、多くの脊椎動物では手綱核に左右非対称性が見られる。間脳背側にこのような左右非対称な構造が形成される仕組みについては、Nodalシグナルが発生期の視床上部の左側で特異的に働いていることが真骨類(Teleosts)のゼブラフィッシュ、軟骨魚類(Chondrichthyes)のトラザメ、円口類(Cyclostomes)のヤツメウナギで知られている。トラザメではNodalの下流標的因子であるPitx2が手綱核で左右非対称に発現し、トラザメとヤツメウナギではMapK-ERKの活性が右の手綱核で見られる<ref><pubmed> 25819227 </pubmed></ref>。こうしたことから、手綱核群と松果体複合体の非対称性形成に関わる分子機構の起源は脊椎動物の共通祖先にまで遡る可能性が指摘されている。
 視床上部は手綱核群、上生体(松果体)、視蓋前域などから構成される(視蓋前域を中脳に含める場合もある)。基底核や辺縁系と連絡する手綱核群は、手綱交連によって互いに連絡している。多くの脊椎動物では、手綱核の背側に光受容やサーカディアンリズムにかかわる上生体(松果体)が発生する。これはヒトでは単一の構造であるが、脊椎動物のいくつかの系統では上生体の他に、副松果体(parapineal organ;魚類)、前頭器官(pineal organ; 両生類)、頭頂眼(parietal eye;爬虫類)が生じる<ref>'''Grande L, Liem KF, Walker WF'''<br>Functional anatomy of vertebrates: An Evolutionary Perspective, Third edition. Chapter 12<br>''Harcourt college publishers, Florida'':2000</ref><ref>'''保 智己'''<br>『見える光,見えない光』(寺北明久・蟻川謙太郎 編) pp. 135-153.<br>'' 共立出版(東京)'':2009</ref>。これらは上生体と共に松果体複合体と呼ばれている。また、多くの脊椎動物では手綱核に左右非対称性が見られる。間脳背側にこのような左右非対称な構造が形成される仕組みについては、Nodalシグナルが発生期の視床上部の左側で特異的に働いていることが真骨類(Teleosts)のゼブラフィッシュ、軟骨魚類(Chondrichthyes)のトラザメ、円口類(Cyclostomes)のヤツメウナギで知られている。トラザメではNodalの下流標的因子であるPitx2が手綱核で左右非対称に発現し、トラザメとヤツメウナギではMapK-ERKの活性が右の手綱核で見られる<ref><pubmed> 25819227 </pubmed></ref>。こうしたことから、手綱核群と松果体複合体の非対称性形成に関わる分子機構の起源は脊椎動物の共通祖先にまで遡る可能性が指摘されている。


 視床は羊膜類でよく発達し、他の間脳領域に比べて肥大している。哺乳類では一般的に、視床は新皮質へ入力する神経線維の最も重要な中継地の一つとなり、嗅覚を除く全ての感覚系の上行性経路は特定の視床核に入力する。そしてそれらの神経核は終脳の新皮質領域と相互に連絡する。このことは他の羊膜類(爬虫類と鳥類)でも同様である。しかしながら、無羊膜類では視床はそれほど発達しない。
 視床は羊膜類でよく発達し、他の間脳領域に比べて肥大している。哺乳類では一般的に、視床は新皮質へ入力する神経線維の最も重要な中継地の一つとなり、嗅覚を除く全ての感覚系の上行性経路は特定の視床核に入力する。そしてそれらの神経核は終脳の新皮質領域と相互に連絡する。このことは他の羊膜類(爬虫類と鳥類)でも同様である。しかしながら、無羊膜類では視床はそれほど発達しない。
32行目: 32行目:


== 視床下部と終脳に関する発生基盤 ==
== 視床下部と終脳に関する発生基盤 ==
 視床下部は、前脳の前方腹側で発生するが、他の間脳領域(プロソメア1〜3)とは発現する遺伝子の種類が異なる例が多い。視床下部は少なくともその一部は神経管の腹側の要素(基板)であると考えられており、基板を特徴づける''Shh''の発現が見られる。ただし''Shh''は視床下部の全域に発現するわけではない。また、転写因子である''Nkx2.1''が発現していることも視床下部の特徴である<ref><pubmed> 1811929 </pubmed></ref>。この遺伝子は実際に前脳腹側の形成に関わっている<ref><pubmed> 8557195 </pubmed></ref><ref><pubmed> 10393115 </pubmed></ref>。そして、視床下部領域と終脳とを合わせたものをひとつのコンパートメントと捉える考えが、プロソメアモデルを提唱したPuellesらの研究グループから出されている<ref name=ref2 /><ref name=ref31><pubmed> 25852489 </pubmed></ref>(図1:発生期の間脳の模式図)。この視床下部−終脳コンパートメントはsecondary procencephalonと名付けられている。このモデルでは発生期の前脳は間脳(プロソメア1〜3)とsecondary procencephalonに分化するとされる。つまり、従来のモデルでは視床下部は間脳に含まれるが、このモデルでは視床下部はsecondary procencephalonに含まれる。前脳が後方の「間脳」と前方の「secondary procencephalon」にわかれるとする形態発生学的な根拠として、「間脳」領域の発生は腹側にある脊索の影響を受け、「secondary procencephalon」は脊索前板(prechordal plate)の影響を受けることが挙げられる。このモデルに従うなら、secondary procencephalonの背側部分が柊脳で、その腹側部分が視床下部となり、同時に視床下部が神経管の最も前方の領域となる<ref name=ref31 />。secondary procencephalonはさらにhypotyalamo-telencephalic prosomere 1と2(HP1とHP2)に細分されている。HP1が後方でHP2が前方である。視床下部はHP1に含まれる部分がpeduncular hypothalamus(PHy)、HP2に含まれる部分がterminal hypothalamus(THy)と名付けられている(図1:発生期の間脳の模式図)。終脳ではHP1が外套(Pallium)と外套下部(subpallium)の多くの領域を占め、HP2は視索前野と前交連を含む領域を占める。さらに真骨魚類では終脳と視床下部の間にあるoptic recess region(視交叉陥凹部;目の網膜も含む)を一つのユニットとして認め、secondary procencephalonを三つのパートに分ける考えも出されている<ref><pubmed> 25736911 </pubmed></ref>。
 視床下部は、前脳の前方腹側で発生するが、他の間脳領域(プロソメア1〜3)とは発現する遺伝子の種類が異なる例が多い。視床下部は少なくともその一部は神経管の腹側の要素(基板)であると考えられており、基板を特徴づける''Shh''の発現が見られる。ただし''Shh''は視床下部の全域に発現するわけではない。また、転写因子である''Nkx2.1''が発現していることも視床下部の特徴である<ref><pubmed> 1811929 </pubmed></ref>。この遺伝子は実際に前脳腹側の形成に関わっている<ref><pubmed> 8557195 </pubmed></ref><ref><pubmed> 10393115 </pubmed></ref>。そして、視床下部領域と終脳とを合わせたものをひとつのコンパートメントと捉える考えが、プロソメアモデルを提唱したPuellesらの研究グループから出されている<ref name=ref2 /><ref name=ref31><pubmed> 25852489 </pubmed></ref>('''図1''')。この視床下部−終脳コンパートメントはsecondary procencephalonと名付けられている。このモデルでは発生期の前脳は間脳(プロソメア1〜3)とsecondary procencephalonに分化するとされる。つまり、従来のモデルでは視床下部は間脳に含まれるが、このモデルでは視床下部はsecondary procencephalonに含まれる。前脳が後方の「間脳」と前方の「secondary procencephalon」にわかれるとする形態発生学的な根拠として、「間脳」領域の発生は腹側にある脊索の影響を受け、「secondary procencephalon」は脊索前板(prechordal plate)の影響を受けることが挙げられる。このモデルに従うなら、secondary procencephalonの背側部分が柊脳で、その腹側部分が視床下部となり、同時に視床下部が神経管の最も前方の領域となる<ref name=ref31 />。secondary procencephalonはさらにhypotyalamo-telencephalic prosomere 1と2(HP1とHP2)に細分されている。HP1が後方でHP2が前方である。視床下部はHP1に含まれる部分がpeduncular hypothalamus(PHy)、HP2に含まれる部分がterminal hypothalamus(THy)と名付けられている(図1:発生期の間脳の模式図)。終脳ではHP1が外套(Pallium)と外套下部(subpallium)の多くの領域を占め、HP2は視索前野と前交連を含む領域を占める。さらに真骨魚類では終脳と視床下部の間にあるoptic recess region(視交叉陥凹部;目の網膜も含む)を一つのユニットとして認め、secondary procencephalonを三つのパートに分ける考えも出されている<ref><pubmed> 25736911 </pubmed></ref>。


== 間脳発生機構の起源 ==
== 間脳発生機構の起源 ==
41行目: 41行目:
== 神経回路形成 ==
== 神経回路形成 ==
=== 基本的神経路 ===
=== 基本的神経路 ===
間脳の発生の進行に伴い、その内部には様々な神経回路が生じる。発生初期には基本的神経路(The early axon scaffold)として、脊椎動物で高度に保存された神経路が形成され、発生後期に作られる多くの神経路の足場としても重要な役割を担う<ref><pubmed> 2351059 </pubmed></ref><ref><pubmed> 18158094 </pubmed></ref>。これらのうち、間脳では後交連や手綱交連、tract of postoptic commissure(TPOC)などが発生する(図2:トラザメ胚(St.28)の中枢神経系)。後交連は、間脳の後方背側、中脳と接するところに生じ、視蓋前域(プロソメア1)を特徴づける構造となる。手綱交連は間脳の背側で後交連の前方に生じ、視床(プロソメア2)の特徴の一つとなる。これらの交連は円口類の段階から見られるため、脊椎動物の共通祖先の段階ですでに獲得されていた可能性がある。後交連と手綱交連はクジラ類では融合して交連複合体を形成する[40]。後交連やTPOCの形成にはPax6が関わるとされる<ref><pubmed> 9169845 </pubmed></ref><ref><pubmed> 15514979 </pubmed></ref>。
[[ファイル:図2:トラザメ胚(St.28)の中枢神経系.png|thumb|right|300px|'''図2. トラザメ胚(St.28)の中枢神経系''']]
間脳の発生の進行に伴い、その内部には様々な神経回路が生じる。発生初期には基本的神経路(The early axon scaffold)として、脊椎動物で高度に保存された神経路が形成され、発生後期に作られる多くの神経路の足場としても重要な役割を担う<ref><pubmed> 2351059 </pubmed></ref><ref><pubmed> 18158094 </pubmed></ref>。これらのうち、間脳では後交連や手綱交連、tract of postoptic commissure(TPOC)などが発生する('''図2''')。後交連は、間脳の後方背側、中脳と接するところに生じ、視蓋前域(プロソメア1)を特徴づける構造となる。手綱交連は間脳の背側で後交連の前方に生じ、視床(プロソメア2)の特徴の一つとなる。これらの交連は円口類の段階から見られるため、脊椎動物の共通祖先の段階ですでに獲得されていた可能性がある。後交連と手綱交連はクジラ類では融合して交連複合体を形成する[40]。後交連やTPOCの形成にはPax6が関わるとされる<ref><pubmed> 9169845 </pubmed></ref><ref><pubmed> 15514979 </pubmed></ref>。


=== 視床ー終脳軸索投射 ===
=== 視床ー終脳軸索投射 ===
 間脳からは終脳に向けて数多くの神経が伸びていく.特に羊膜類では視床に嗅覚以外の全ての感覚が集められ、そこから終脳に多くの軸索が入力する。これらの線維は一般的に「視床-終脳路」と呼ばれている.これらの神経がどのような仕組みで終脳に入力するのかについてはこれまでに主にマウスを用いて多くの研究がなされている。視床-終脳路の道筋には軸索をガイドするタンパク質群があり,視床の神経核から伸びる軸索は、それらのシグナルを受け取り応答することによって迷うことなく正確に目的地にたどり着く。例えば,視床下部に発現する''Nkx2.1'' は,神経ガイド分子の一種''Slit''の発現を調節しており,この分子の反発作用によって視床から終脳に伸びていく軸索は終脳の方向に向きを変える<ref><pubmed> 11830575 </pubmed></ref>。その他にも,視床の神経核では、神経ガイド因子の''Eph''(''EphA3'', ''EphA4'', ''EphA7'')が勾配をもって発現している。そのため、そこから伸びる軸索にはEphを多く発現しているものから少なく発現しているものがあり、それらの軸索は終脳側にあるエフリンA5の勾配に応答し、反発性相互作用により、Ephの濃度に応じて振り分けられることで特異的な投射が形成される<ref><pubmed> 15219737 </pubmed></ref>。また、誘因性のガイド因子であるNetrin1が視床の軸索を終脳へ誘引していくことにより多くの軸索が終脳へ入力できるようになるという報告がある<ref><pubmed> 18479186 </pubmed></ref>。ただし、Netrin1は視床前部のニューロンには誘因性に作用するが、視床後部のニューロンに対しては反発性に作用する。
 間脳からは終脳に向けて数多くの神経が伸びていく.特に羊膜類では視床に嗅覚以外の全ての感覚が集められ、そこから終脳に多くの軸索が入力する。これらの線維は一般的に「視床-終脳路」と呼ばれている.これらの神経がどのような仕組みで終脳に入力するのかについてはこれまでに主にマウスを用いて多くの研究がなされている。視床-終脳路の道筋には軸索をガイドするタンパク質群があり,視床の神経核から伸びる軸索は、それらのシグナルを受け取り応答することによって迷うことなく正確に目的地にたどり着く。例えば,視床下部に発現する''Nkx2.1'' は,神経ガイド分子の一種''Slit''の発現を調節しており,この分子の反発作用によって視床から終脳に伸びていく軸索は終脳の方向に向きを変える<ref><pubmed> 11830575 </pubmed></ref>。その他にも,視床の神経核では、神経ガイド因子の''Eph''(''EphA3'', ''EphA4'', ''EphA7'')が勾配をもって発現している。そのため、そこから伸びる軸索にはEphを多く発現しているものから少なく発現しているものがあり、それらの軸索は終脳側にあるエフリンA5の勾配に応答し、反発性相互作用により、Ephの濃度に応じて振り分けられることで特異的な投射が形成される<ref><pubmed> 15219737 </pubmed></ref>。また、誘因性のガイド因子であるネトリン1が視床の軸索を終脳へ誘引していくことにより多くの軸索が終脳へ入力できるようになるという報告がある<ref><pubmed> 18479186 </pubmed></ref>。ただし、ネトリン1は視床前部のニューロンには誘因性に作用するが、視床後部のニューロンに対しては反発性に作用する。


 視床―終脳路は哺乳類では内包を形成し終脳半球の内側部を通るが、これは羊膜類では例外的であり、他の羊膜類では線条体の外側を抜けるような経路をとる。この進路決定には、哺乳類の終脳で発現する''Slit2''が関与していることが知られている<ref><pubmed> 21435555 </pubmed></ref>。哺乳類のマウスでは、軸索を誘引する働きを有する細胞群("corridor" guidepost neurons)が外側基底核原基(LGE)から内側基底核原基(MGE)の方向へ向けて移動するが、この際に''Slit2''が終脳の腹側から背側に拡大して発現することにより、その細胞群はSlit2の反発作用を受け、視床軸索と近接する領域に移動する。これにより、視床から伸長する軸索はこれら細胞群の誘引作用を受けられるようになり、終脳の内側を通るようになる。一方、主竜類のように''Slit2''が終脳腹側に限局して発現をしていた場合、guidepost neuronsはSlit2による反発作用を受けず、視床軸索とは離れた位置に移動する。その結果、視床軸索はこれら細胞群の誘引作用を受けず、終脳の外側を通る。
 視床―終脳路は哺乳類では内包を形成し終脳半球の内側部を通るが、これは羊膜類では例外的であり、他の羊膜類では線条体の外側を抜けるような経路をとる。この進路決定には、哺乳類の終脳で発現する''Slit2''が関与していることが知られている<ref><pubmed> 21435555 </pubmed></ref>。哺乳類のマウスでは、軸索を誘引する働きを有する細胞群("corridor" guidepost neurons)が外側基底核原基(LGE)から内側基底核原基(MGE)の方向へ向けて移動するが、この際に''Slit2''が終脳の腹側から背側に拡大して発現することにより、その細胞群はSlit2の反発作用を受け、視床軸索と近接する領域に移動する。これにより、視床から伸長する軸索はこれら細胞群の誘引作用を受けられるようになり、終脳の内側を通るようになる。一方、主竜類のように''Slit2''が終脳腹側に限局して発現をしていた場合、guidepost neuronsはSlit2による反発作用を受けず、視床軸索とは離れた位置に移動する。その結果、視床軸索はこれら細胞群の誘引作用を受けず、終脳の外側を通る。

案内メニュー