713
回編集
Junko kurahashi (トーク | 投稿記録) 細編集の要約なし |
Junko kurahashi (トーク | 投稿記録) |
||
73行目: | 73行目: | ||
文献<ref name=Kendel1991/> より改変。]] | 文献<ref name=Kendel1991/> より改変。]] | ||
神経細胞は、他の神経細胞からの[[シナプス]]を介した信号を複数の樹状突起および細胞体の膜で受容し、その結果、神経細胞はこれらの細胞膜に発生した局所電位の変化を積算して活動電位として表出する。ケーブル特性はシナプスにおけるこの統合過程の物理的基盤となっている。シナプス後細胞でおこるシナプス反応の空間的加重や時間的加重、すなわち反応の局所的統合は、膜の(閾値下の)ケーブル特性によって行われる | 神経細胞は、他の神経細胞からの[[シナプス]]を介した信号を複数の樹状突起および細胞体の膜で受容し、その結果、神経細胞はこれらの細胞膜に発生した局所電位の変化を積算して活動電位として表出する。ケーブル特性はシナプスにおけるこの統合過程の物理的基盤となっている。シナプス後細胞でおこるシナプス反応の空間的加重や時間的加重、すなわち反応の局所的統合は、膜の(閾値下の)ケーブル特性によって行われる<ref name=ozawa2009/>。 | ||
空間的加重や時間的加重の程度は、それぞれ長さ定数と時定数によって規定される('''図4''')。ただし、樹状突起では、時定数が大きい場合に電位変化が長く持続することになり、その結果、時間的加重がより大きくなるのに対し、軸索においては、上述の通り逆に時定数が短い方が膜の隣接部位がより早く閾値に達することになるので、伝導速度は速くなる。 | |||
また、長さ定数が大きい場合は、信号が閾値以下に減衰する前に遠くへ到達することになるため、伝導速度は速くなる。ケーブル特性を決定するパラメータによって、電気緊張性電位の波及による局所電流や活動電位が、生体組織においてどのように広がるかが規定されている。このことは、小さな神経細胞より発生した膜電位の変化が、遠方の細胞まで確実に伝達されるための巧妙な細胞内機構が備わっていることを示すものである。 | |||
== 参考文献 == | == 参考文献 == | ||
<references /> | <references /> |