115
回編集
Mitsuokawato (トーク | 投稿記録) 細編集の要約なし |
Mitsuokawato (トーク | 投稿記録) 細編集の要約なし |
||
31行目: | 31行目: | ||
小脳皮質が運動学習において重要な役割を果たしていることに関しては、大多数の研究者の合意が得られている[3]。小脳の機能に関する他の主要な仮説、タイミング制御、リズム説とも背反するものではないことが理論的に明らかにされてきた[4]。 | 小脳皮質が運動学習において重要な役割を果たしていることに関しては、大多数の研究者の合意が得られている[3]。小脳の機能に関する他の主要な仮説、タイミング制御、リズム説とも背反するものではないことが理論的に明らかにされてきた[4]。 | ||
登上線維による教師あり学習 | ===== 登上線維による教師あり学習 ===== | ||
最近の計算論的神経科学では、学習を教師あり学習、強化学習、教師無し学習に分類する[5]。ニューロンが教師無し学習を実現しようとすれば、ヘッブ則に基づいてシナプス荷重を変更する必要がある。つまり、シナプスに入力があり、後シナプスニューロンが発火したとき、そのシナプスが選択的に増強される。これが成立するためには、ニューロンが発火したという情報をシナプスまで伝達する必要がある。大脳皮質と海馬の錐体細胞では、軸索初節から樹状突起の末端部に向けて逆伝搬する活動電位がこの情報伝搬を実現している。強化学習は、このヘッブ則に加えて、ドーパミンなどのモノアミンがシナプス可塑性を修飾する機構により実現されている。しかし、プルキンエ細胞では樹状突起の分岐が著しいため、樹状突起の末梢側が電気的に大きな負荷になるなどの理由で、活動電位逆伝搬が起きない。また錐体細胞でシナプス前活動と逆伝搬した活動電位の同時性検出を司るNMDA受容体が存在しない。つまり、ヘッブ則を実現することができない。その一方で、プルキンエ細胞では登上線維が活動すると、樹状突起で大きな脱分極が引き起こされる。その数十から100ミリ秒程度前に平行線維入力があったスパインでは、代謝型グルタミン酸受容体の活性化を経由してイノシトール3リン酸がゆっくりと増加する。脱分極でスパイン内に流入したカルシウムイオンとイノシトール3リン酸増加の同時性検出が、カルシウムを貯蔵している小胞体のイノシトール3リン酸受容体で行われる。つまり平行線維入力と数十ミリ秒程度遅れた登上線維入力の同時性が小胞体からのカルシウム誘導カルシウム放出をおこして、スパイン内のカルシウム濃度がモルレベルで増加し、シナプス特異的、また2種類の興奮性入力の間で連合的にシナプス可塑性が生じる[6,7]。まとめると、理論で提案された教師あり学習は、プルキンエ細胞の電気生理と分子神経科学および最近のモデル研究からも支持されている。 | 最近の計算論的神経科学では、学習を教師あり学習、強化学習、教師無し学習に分類する[5]。ニューロンが教師無し学習を実現しようとすれば、ヘッブ則に基づいてシナプス荷重を変更する必要がある。つまり、シナプスに入力があり、後シナプスニューロンが発火したとき、そのシナプスが選択的に増強される。これが成立するためには、ニューロンが発火したという情報をシナプスまで伝達する必要がある。大脳皮質と海馬の錐体細胞では、軸索初節から樹状突起の末端部に向けて逆伝搬する活動電位がこの情報伝搬を実現している。強化学習は、このヘッブ則に加えて、ドーパミンなどのモノアミンがシナプス可塑性を修飾する機構により実現されている。しかし、プルキンエ細胞では樹状突起の分岐が著しいため、樹状突起の末梢側が電気的に大きな負荷になるなどの理由で、活動電位逆伝搬が起きない。また錐体細胞でシナプス前活動と逆伝搬した活動電位の同時性検出を司るNMDA受容体が存在しない。つまり、ヘッブ則を実現することができない。その一方で、プルキンエ細胞では登上線維が活動すると、樹状突起で大きな脱分極が引き起こされる。その数十から100ミリ秒程度前に平行線維入力があったスパインでは、代謝型グルタミン酸受容体の活性化を経由してイノシトール3リン酸がゆっくりと増加する。脱分極でスパイン内に流入したカルシウムイオンとイノシトール3リン酸増加の同時性検出が、カルシウムを貯蔵している小胞体のイノシトール3リン酸受容体で行われる。つまり平行線維入力と数十ミリ秒程度遅れた登上線維入力の同時性が小胞体からのカルシウム誘導カルシウム放出をおこして、スパイン内のカルシウム濃度がモルレベルで増加し、シナプス特異的、また2種類の興奮性入力の間で連合的にシナプス可塑性が生じる[6,7]。まとめると、理論で提案された教師あり学習は、プルキンエ細胞の電気生理と分子神経科学および最近のモデル研究からも支持されている。 | ||
長期増強か長期抑圧か | ===== 長期増強か長期抑圧か ===== | ||
David Marrは、平行線維入力と登上線維入力が同時に興奮すると、活動した平行線維シナプスが増強されると提案した。少し遅れて、Albusや伊藤正男は、シナプスが減弱すると提案した[8,9]。実験的に後者が正しいことが示された[10]。 | David Marrは、平行線維入力と登上線維入力が同時に興奮すると、活動した平行線維シナプスが増強されると提案した。少し遅れて、Albusや伊藤正男は、シナプスが減弱すると提案した[8,9]。実験的に後者が正しいことが示された[10]。 | ||
プルキンエ細胞が唯一のシナプス可塑性の座 | ===== プルキンエ細胞が唯一のシナプス可塑性の座 ===== | ||
David Marrは、小脳では、プルキンエ細胞の平行線維入力に唯一のシナプス可塑性があると提案したが、プルキンエ細胞の抑制性シナプス、皮質の分子層の介在ニューロン、顆粒細胞、小脳核ニューロンにもシナプス可塑性があることが明らかになった[11]。 | David Marrは、小脳では、プルキンエ細胞の平行線維入力に唯一のシナプス可塑性があると提案したが、プルキンエ細胞の抑制性シナプス、皮質の分子層の介在ニューロン、顆粒細胞、小脳核ニューロンにもシナプス可塑性があることが明らかになった[11]。 | ||
離散信号によるパターン識別 | ===== 離散信号によるパターン識別 ===== | ||
機械学習の教師ありアルゴリズムの目的は分類と回帰に大別される。前者は信号パターンを複数のクラスに分類する事が目的である。一方、回帰では入力信号パターンから、連続値の出力を近似することが目的である。David Marrは、小脳の役割は分類の教師あり連合学習であると特徴付けたが、その後の神経科学のデータや理論は、回帰であることを示している[12,13,14,15]。具体的には、例えば、サルの追従眼球運動中の傍片葉プルキンエ細胞の瞬時発火頻度は、運動のキネマティクスや運動司令をよく表している[12,13]。また、小脳内部モデル理論では、運動制御対象の順モデルや逆モデルが学習で獲得されると提案するが、これは回帰問題である[14,15]。 | 機械学習の教師ありアルゴリズムの目的は分類と回帰に大別される。前者は信号パターンを複数のクラスに分類する事が目的である。一方、回帰では入力信号パターンから、連続値の出力を近似することが目的である。David Marrは、小脳の役割は分類の教師あり連合学習であると特徴付けたが、その後の神経科学のデータや理論は、回帰であることを示している[12,13,14,15]。具体的には、例えば、サルの追従眼球運動中の傍片葉プルキンエ細胞の瞬時発火頻度は、運動のキネマティクスや運動司令をよく表している[12,13]。また、小脳内部モデル理論では、運動制御対象の順モデルや逆モデルが学習で獲得されると提案するが、これは回帰問題である[14,15]。 | ||
顆粒細胞層のコドン表現 | ===== 顆粒細胞層のコドン表現 ===== | ||
教師ありのシナプス可塑性により、運動学習が行われると言う可能性は、GS Brindleyがすでに言及していたので、David Marrの小脳理論の最も独創的な部分は、顆粒細胞によるコドン表現である。小脳顆粒細胞はヒトでは500億個あり、脳内の他の全ての種類の神経細胞の総和より多い。4から5個の小さな樹状突起を持ち、同じ数の苔状線維から興奮性シナプス入力を受ける。苔状線維の総数は顆粒細胞の総数の200分の1である。コドン仮説では、4から5本の苔状線維のうち、ある特定の組み合わせが興奮したときのみに顆粒細胞が発火すると考える。現在の計算理論から考えると、コドン仮説はごく少数の顆粒細胞のみが発火するという意味でスパース符号化、苔状線維の符号から200倍の数の顆粒細胞の空間に拡張した符号化expansion codingと言える。これによって、多数の顆粒細胞が同時に興奮する文脈の数を減らし、小脳皮質の入力と出力の間の連想記憶の容量を著しく増大できると考えた。 | 教師ありのシナプス可塑性により、運動学習が行われると言う可能性は、GS Brindleyがすでに言及していたので、David Marrの小脳理論の最も独創的な部分は、顆粒細胞によるコドン表現である。小脳顆粒細胞はヒトでは500億個あり、脳内の他の全ての種類の神経細胞の総和より多い。4から5個の小さな樹状突起を持ち、同じ数の苔状線維から興奮性シナプス入力を受ける。苔状線維の総数は顆粒細胞の総数の200分の1である。コドン仮説では、4から5本の苔状線維のうち、ある特定の組み合わせが興奮したときのみに顆粒細胞が発火すると考える。現在の計算理論から考えると、コドン仮説はごく少数の顆粒細胞のみが発火するという意味でスパース符号化、苔状線維の符号から200倍の数の顆粒細胞の空間に拡張した符号化expansion codingと言える。これによって、多数の顆粒細胞が同時に興奮する文脈の数を減らし、小脳皮質の入力と出力の間の連想記憶の容量を著しく増大できると考えた。 |
回編集