115
回編集
Mitsuokawato (トーク | 投稿記録) 細 (→小脳研究に与えたインパクト) |
Mitsuokawato (トーク | 投稿記録) |
||
41行目: | 41行目: | ||
=== プルキンエ細胞が唯一のシナプス可塑性の座 === | === プルキンエ細胞が唯一のシナプス可塑性の座 === | ||
David | David Marrは、小脳では、プルキンエ細胞の平行線維入力に唯一のシナプス可塑性があると提案したが、プルキンエ細胞上の[[抑制性シナプス]]、小脳皮質の[[分子層]]の[[介在ニューロン]]、顆粒細胞、[[小脳核]]ニューロンにもシナプス可塑性があることが明らかになった<ref><pubmed> 23666089 </pubmed></ref>[11]。しかし、異なるニューロン種での学習の能力を比較するためには、可塑性を有するシナプスの数を比較する必要がある。プルキンエ細胞の総数は1千5百万で、一細胞あたり平行線維シナプスが80万個あるから、シナプス総数は十兆である。顆粒細胞は5百億個あるが、シナプス数は4.5であるから、シナプス総数は2千億で、プルキンエ細胞のシナプス総数より、二桁少ない。ゴルジ細胞、バスケット細胞はプルキンエ細胞より数が少なく、しかも細胞が小さいのでシナプス総数は三桁以上少ない。星状細胞の数はプルキンエ細胞の10倍程度あるが、著しく小さいのでシナプス数も少ない。小脳核細胞は数十万個程度しかない。従って、プルキンエ細胞は小脳の他の種類のニューロンを全て集めても、2桁シナプス数が多いことになる。学習機械の自由度は、パラメータの数で決まり、数が多いとそれだけ複雑な問題を解けることになる。定量的には、小脳の学習能力の殆どがプルキンエ細胞に由来すると考えられる。 | ||
=== 離散信号によるパターン識別 === | === 離散信号によるパターン識別 === |
回編集