「ナノボディ」の版間の差分

ナビゲーションに移動 検索に移動
60行目: 60行目:
 通常、ナノボディは、目的別に発現ベクターにクローニングした後、哺乳類細胞だけなく、[[wj:細菌|細菌]]、[[wj:酵母|酵母]]、[[wj:植物|植物]]でも産生させることができる。哺乳類細胞では、抗体が本来機能する細胞外だけでなく、細胞内部でも発現させることが可能である([[wj:イントラボディ|イントラボディ]]、下記参考)。ただし、ナノボディの配列はそれぞれ異なり、[[wj:ジスルフィド結合|ジスルフィド結合]]の生成が抗原との結合力あるコンフォメーションを取るために必要な場合、細胞外とは還元環境の異なる細胞内や細菌などでは活性のあるものが産生できないものもある。ナノボディの中には90℃という高温でも失活しないものもあるように<ref><pubmed>10209277</pubmed></ref><ref><pubmed>24739391</pubmed></ref>、一般に安定性は高いが、これも各ナノボディのアミノ酸配列から生じる特性による。<u>(編集部コメント:この段落はむしろ応用の方に移してはと思います)</u>
 通常、ナノボディは、目的別に発現ベクターにクローニングした後、哺乳類細胞だけなく、[[wj:細菌|細菌]]、[[wj:酵母|酵母]]、[[wj:植物|植物]]でも産生させることができる。哺乳類細胞では、抗体が本来機能する細胞外だけでなく、細胞内部でも発現させることが可能である([[wj:イントラボディ|イントラボディ]]、下記参考)。ただし、ナノボディの配列はそれぞれ異なり、[[wj:ジスルフィド結合|ジスルフィド結合]]の生成が抗原との結合力あるコンフォメーションを取るために必要な場合、細胞外とは還元環境の異なる細胞内や細菌などでは活性のあるものが産生できないものもある。ナノボディの中には90℃という高温でも失活しないものもあるように<ref><pubmed>10209277</pubmed></ref><ref><pubmed>24739391</pubmed></ref>、一般に安定性は高いが、これも各ナノボディのアミノ酸配列から生じる特性による。<u>(編集部コメント:この段落はむしろ応用の方に移してはと思います)</u>


==利用法==
===修飾法===
[[ファイル:nanobody4.jpg ‎|サムネイル|800px|'''図4.ナノボディの利用法''']]
 基本的には通常の「抗体」のように生化学的解析([[ウェスタンブロッティング]]、[[免疫沈降法]]、[[ELISA]]など)、[[免疫組織化学]]([[組織染色]]、[[蛍光抗体法]]など)、細胞分離技術([[wj:FACS|FACS]]など)に利用できる(図4)。
 
 しかし、ナノボディだけでは 通常の抗体と違い定常領域を欠いているため、何らかの修飾が必要である。このことはナノボディが抗体のように簡便に利用できないという不便さになっているが、修飾を実験に合わせて自在に工夫できるという利点にもなっている。また、余分な構造を持たないので、バックグラウンドを低下させ、感度や精度の高い解析が可能になるという長所もある。
 しかし、ナノボディだけでは 通常の抗体と違い定常領域を欠いているため、何らかの修飾が必要である。このことはナノボディが抗体のように簡便に利用できないという不便さになっているが、修飾を実験に合わせて自在に工夫できるという利点にもなっている。また、余分な構造を持たないので、バックグラウンドを低下させ、感度や精度の高い解析が可能になるという長所もある。


69行目: 66行目:
 免疫組織化学に最もよく用いられているのは、ナノボディをタンパク質として精製後、色素分子などを化学的にカップリングするという方法である。このような試薬は既製のナノボディ試薬として市販もされている(例、ChromoTek社<ref>https://www.chromotek.com/</ref> )。最近、1次抗体を認識する「2次抗体」の活性を持つナノボディが報告されている<ref><pubmed>29263082</pubmed></ref> 。ナノボディの多くは、大腸菌で活性あるものを大量産生、精製することができるので、一度、配列がわかれば、動物を使用する必要がなくなる。
 免疫組織化学に最もよく用いられているのは、ナノボディをタンパク質として精製後、色素分子などを化学的にカップリングするという方法である。このような試薬は既製のナノボディ試薬として市販もされている(例、ChromoTek社<ref>https://www.chromotek.com/</ref> )。最近、1次抗体を認識する「2次抗体」の活性を持つナノボディが報告されている<ref><pubmed>29263082</pubmed></ref> 。ナノボディの多くは、大腸菌で活性あるものを大量産生、精製することができるので、一度、配列がわかれば、動物を使用する必要がなくなる。


 また、化学的なカップリングなので、カップリングする分子を変化させ工夫することで、目的に合わせて様々な標識ナノボディ(薬剤を結合した[[wj:武装抗体|武装抗体]]など)を作製できる可能性がある<ref><pubmed>28883823 </pubmed></ref> 。しかし、カップリングによるアミノ酸残基を修飾する反応により抗原結合能を失うことも想定される。しかし、修飾するアミノ酸残基の位置を制御することは可能である<ref><pubmed>26633879</pubmed></ref> 。<u>編集部コメント:「しかし」がダブっています。<u/>
 また、化学的なカップリングなので、カップリングする分子を変化させ工夫することで、目的に合わせて様々な標識ナノボディ(薬剤を結合した[[wj:武装抗体|武装抗体]]など)を作製できる可能性がある<ref><pubmed>28883823 </pubmed></ref> 。しかし、カップリングによるアミノ酸残基を修飾する反応により抗原結合能を失うことも想定される。しかし、修飾するアミノ酸残基の位置を制御することは可能である<ref><pubmed>26633879</pubmed></ref> 。<u>(編集部コメント:「しかし」がダブっています。)</u>


 ナノボディは小さく、通常の抗体では入り込めない箇所に結合することで、[[STORM]]や[[PALM]]などの[[高解像度顕微鏡]]においても、アーチファクトが減少し、有用なツールになると考えられている<ref><pubmed>23845946</pubmed></ref> 。
 ナノボディは小さく、通常の抗体では入り込めない箇所に結合することで、[[STORM]]や[[PALM]]などの[[高解像度顕微鏡]]においても、アーチファクトが減少し、有用なツールになると考えられている<ref><pubmed>23845946</pubmed></ref> 。
78行目: 75行目:
 RANbodyは、ナノボディを酵素(改良型[[wj:西洋ワサビペルオキシダーゼ] HRP)、抗原性のあるニワトリ抗体IgY、多重エピトープタグなどと組み換えDNA技術により融合させたものである。プラスミドを293T細胞などの動物細胞に導入するだけで、培地中に放出されるので多くの生物医学系の実験室で利用できる。HRPは大腸菌の中では活性のある酵素として発現させることができない。その一つの解決策として、[[アスコルビン酸オキシダーゼ]] ([[APEX2]])との融合タンパク質を大腸菌で発現させて用いることができるが、APEX2はHRPに比べて活性が弱い<ref><pubmed>29915061</pubmed></ref><ref><pubmed>25419960</pubmed></ref> 。
 RANbodyは、ナノボディを酵素(改良型[[wj:西洋ワサビペルオキシダーゼ] HRP)、抗原性のあるニワトリ抗体IgY、多重エピトープタグなどと組み換えDNA技術により融合させたものである。プラスミドを293T細胞などの動物細胞に導入するだけで、培地中に放出されるので多くの生物医学系の実験室で利用できる。HRPは大腸菌の中では活性のある酵素として発現させることができない。その一つの解決策として、[[アスコルビン酸オキシダーゼ]] ([[APEX2]])との融合タンパク質を大腸菌で発現させて用いることができるが、APEX2はHRPに比べて活性が弱い<ref><pubmed>29915061</pubmed></ref><ref><pubmed>25419960</pubmed></ref> 。


==利用法==
[[ファイル:nanobody4.jpg ‎|サムネイル|300px|'''図4.ナノボディの利用法''']]
 基本的には通常の「抗体」のように生化学的解析([[ウェスタンブロッティング]]、[[免疫沈降法]]、[[ELISA]]など)、[[免疫組織化学]]([[組織染色]]、[[蛍光抗体法]]など)、細胞分離技術([[wj:FACS|FACS]]など)に利用できる(図4)。
===免疫沈降法===
===免疫沈降法===
 免疫沈降法(プルダウンPulldown)では、GFPナノボディなどを[[wj:アガロース|アガロース]]や[[wj:磁気ビーズ|磁気ビーズ]]などの担体にカップリングすることで得られた担体が市販されているので利用できる。また、多くのナノボディは大量に自家精製できるので、通常の抗体などの[[wj:アフィニティクロマトグラフィ|アフィニティクロマトグラフィ]]担体を作製するのと同じように利用可能である。例えば、[[wj:グルタチオンS-転移酵素|グルタチオンS-転移酵素]] (GST)などとの融合タンパク質は、グルタチン結合ゲルに容易に結合するので、免疫沈降法に有用である<ref><pubmed>18936248</pubmed></ref> <ref><pubmed>17951627</pubmed></ref> <ref><pubmed>25964651</pubmed></ref> 。
 免疫沈降法(プルダウンPulldown)では、GFPナノボディなどを[[wj:アガロース|アガロース]]や[[wj:磁気ビーズ|磁気ビーズ]]などの担体にカップリングすることで得られた担体が市販されているので利用できる。また、多くのナノボディは大量に自家精製できるので、通常の抗体などの[[wj:アフィニティクロマトグラフィ|アフィニティクロマトグラフィ]]担体を作製するのと同じように利用可能である。例えば、[[wj:グルタチオンS-転移酵素|グルタチオンS-転移酵素]] (GST)などとの融合タンパク質は、グルタチン結合ゲルに容易に結合するので、免疫沈降法に有用である<ref><pubmed>18936248</pubmed></ref> <ref><pubmed>17951627</pubmed></ref> <ref><pubmed>25964651</pubmed></ref> 。
92行目: 92行目:
 リン酸化、アセチル化などの[[wj:翻訳後修飾]](Post-translational modification, PTM) された抗原を認識するナノボディは、翻訳後修飾のセンサーとして利用される<ref><pubmed>23942372</pubmed></ref>。
 リン酸化、アセチル化などの[[wj:翻訳後修飾]](Post-translational modification, PTM) された抗原を認識するナノボディは、翻訳後修飾のセンサーとして利用される<ref><pubmed>23942372</pubmed></ref>。


====分子間相互作用など分子の機能理解への利用====
===分子間相互作用など===
 ナノボディは、[[分子間相互作用]](Protein-protein interaction, [[PPI]])の研究ツールとしても有用である<ref><pubmed>24115738</pubmed></ref><ref><pubmed>29949961</pubmed></ref>。このために、1つの効果的な使用法は、イントラボディとして発現させ、[[FRET]]、[[LRET]]といった分子間相互作用を検出するための方法と組み合わせたバイオイメージングである<ref><pubmed>28725224</pubmed></ref><ref><pubmed>27510808 </pubmed></ref><ref><pubmed>27249560 </pubmed></ref>。また、細胞外分子の分子間相互作用研究のツールとしても利用されている<ref><pubmed>27644106</pubmed></ref><ref><pubmed>30033369</pubmed></ref>。   
 ナノボディは、[[分子間相互作用]](Protein-protein interaction, [[PPI]])の研究ツールとしても有用である<ref><pubmed>24115738</pubmed></ref><ref><pubmed>29949961</pubmed></ref>。このために、1つの効果的な使用法は、イントラボディとして発現させ、[[FRET]]、[[LRET]]といった分子間相互作用を検出するための方法と組み合わせたバイオイメージングである<ref><pubmed>28725224</pubmed></ref><ref><pubmed>27510808 </pubmed></ref><ref><pubmed>27249560 </pubmed></ref>。また、細胞外分子の分子間相互作用研究のツールとしても利用されている<ref><pubmed>27644106</pubmed></ref><ref><pubmed>30033369</pubmed></ref>。   


 また、特定の分子間相互作用を阻害するナノボディを細胞内で発現させたりすることも可能である。このような方法は、分子機能の研究において、タンパク質の数を調整する[[RNAi]]や[[ゲノム編集]]による変異法とは違ったアプローチである<ref><pubmed>28913971</pubmed></ref> 。
 また、特定の分子間相互作用を阻害するナノボディを細胞内で発現させたりすることも可能である。このような方法は、分子機能の研究において、タンパク質の数を調整する[[RNAi]]や[[ゲノム編集]]による変異法とは違ったアプローチである<ref><pubmed>28913971</pubmed></ref> 。


 [[ユビキチン系]]を利用することで、ナノボディの標的タンパク質を特異的に分解することも可能である<ref><pubmed>22157958</pubmed></ref>。
 [[ユビキチン]]系を利用することで、ナノボディの標的タンパク質を特異的に分解することも可能である<ref><pubmed>22157958</pubmed></ref>。


==ナノボディー以外の組み換え結合体==
==ナノボディー以外の組み換え結合体==

案内メニュー