「デルタ型グルタミン酸受容体」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
48行目: 48行目:
 近年の構造学的解析から、この3者コンプレックスはGluD2 : Cbln1 : ニューレキシン = 1(4量体): 2(6量体): 2(単量体)のストイキオメトリーで構成されていることが分かった<ref name=Elegheert2016><pubmed>27418511</pubmed></ref> 。
 近年の構造学的解析から、この3者コンプレックスはGluD2 : Cbln1 : ニューレキシン = 1(4量体): 2(6量体): 2(単量体)のストイキオメトリーで構成されていることが分かった<ref name=Elegheert2016><pubmed>27418511</pubmed></ref> 。


==== リガンド結合領域の機能―D-セリンLTD ====
==== リガンド結合領域の機能―<small>D</small>-セリンLTD ====
 GluD2のリガンド結合領域には[[D-セリン]]や[[グリシン]]が結合することが、構造学的研究から明らかになった。しかしD-セリン結合によってもGluD2はチャネル活性を示さない<ref name=Naur2007><pubmed>17715062</pubmed></ref> 。またこれらのリガンドと結合しないGluD2変異体('''図1''')を成熟したGluD2欠損マウスのプルキンエ細胞に発現させると、平行線維シナプスでのLTD障害とシナプス低形成をともに回復させる<ref name=Hirai2005><pubmed>15592450</pubmed></ref> 。したがって、GluD2のリガンド結合領域は少なくとも成熟後のプルキンエ細胞においてはLTDやシナプス形成には寄与しないと考えられる。
 GluD2のリガンド結合領域には[[D-セリン|<small>D</small>-セリン]]や[[グリシン]]が結合することが、構造学的研究から明らかになった。しかし<small>D</small>-セリン結合によってもGluD2はチャネル活性を示さない<ref name=Naur2007><pubmed>17715062</pubmed></ref> 。またこれらのリガンドと結合しないGluD2変異体('''図1''')を成熟したGluD2欠損マウスのプルキンエ細胞に発現させると、平行線維シナプスでのLTD障害とシナプス低形成をともに回復させる<ref name=Hirai2005><pubmed>15592450</pubmed></ref> 。したがって、GluD2のリガンド結合領域は少なくとも成熟後のプルキンエ細胞においてはLTDやシナプス形成には寄与しないと考えられる。


 一方、D-セリンを投与すると、培養プルキンエ細胞ではAMPA受容体のエンドサイトーシスが誘導され、小脳切片では平行線維-プルキンエ細胞シナプス伝達が低下して平行線維シナプスでLTDが起きる。GluD2欠損マウスや、リガンド結合部位GluD2変異体を発現するプルキンエ細胞ではこれらの現象は起きない。[[NMDA型グルタミン酸受容体]]阻害剤は、通常の平行線維の刺激条件で引き起こされるLTDを阻害するが、D-セリン投与によって誘導されるLTDには影響しない。このように、D-セリンがGluD2のリガンド結合領域に結合することによって、新たなシナプス可塑性(D-セリンLTD)が引き起こされることが明らかとなった。D-セリンLTDにおいても、通常のLTDと同様に、GluD2のC末端領域が必要である<ref name=Kakegawa2011><pubmed>21460832</pubmed></ref> 。
 一方、D-セリンを投与すると、培養プルキンエ細胞では[[AMPA型グルタミン酸受容体]]のエンドサイトーシスが誘導され、小脳切片では平行線維-プルキンエ細胞シナプス伝達が低下して平行線維シナプスでLTDが起きる。GluD2欠損マウスや、リガンド結合部位GluD2変異体を発現するプルキンエ細胞ではこれらの現象は起きない。[[NMDA型グルタミン酸受容体]]阻害剤は、通常の平行線維の刺激条件で引き起こされるLTDを阻害するが、<small>D</small>-セリン投与によって誘導されるLTDには影響しない。このように、<small>D</small>-セリンがGluD2のリガンド結合領域に結合することによって、新たなシナプス可塑性(<small>D</small>-セリンLTD)が引き起こされることが明らかとなった。<small>D</small>-セリンLTDにおいても、通常のLTDと同様に、GluD2のC末端領域が必要である<ref name=Kakegawa2011><pubmed>21460832</pubmed></ref> 。


 成熟後の小脳にはD-セリンはほとんど検出できないが、生後発達期には豊富に存在する。実際に生後発達期のマウスの小脳切片において、平行線維を高頻度刺激すると平行線維から放出される[[グルタミン酸]]がspilloverし、近接する[[Bergmannグリア]]のCa<sup>2+</sup>透過型AMPA受容体を活性化することによって、BergmannグリアからD-セリンが放出されることが分かった<ref name=Kakegawa2011><pubmed>21460832</pubmed></ref> 。
 成熟後の小脳には<small>D</small>-セリンはほとんど検出できないが、生後発達期には豊富に存在する。実際に生後発達期のマウスの小脳切片において、平行線維を高頻度刺激すると平行線維から放出される[[グルタミン酸]]がspilloverし、近接する[[Bergmannグリア]]のCa<sup>2+</sup>透過型AMPA受容体を活性化することによって、Bergmannグリアから<small>D</small>-セリンが放出されることが分かった<ref name=Kakegawa2011><pubmed>21460832</pubmed></ref> 。


 また生後発達期のマウスの小脳切片においては、平行線維の高頻度刺激とプルキンエ細胞の脱分極を組み合わせると、平行線維-プルキンエ細胞シナプスでD-セリンLTDが誘導される<ref name=Kakegawa2011><pubmed>21460832</pubmed></ref> 。D-セリンLTDは、幼若期の運動学習促進に重要な役割を果たしていることが示唆されている<ref name=Kakegawa2011><pubmed>21460832</pubmed></ref> 。
 また生後発達期のマウスの小脳切片においては、平行線維の高頻度刺激とプルキンエ細胞の脱分極を組み合わせると、平行線維-プルキンエ細胞シナプスで<small>D</small>-セリンLTDが誘導される<ref name=Kakegawa2011><pubmed>21460832</pubmed></ref> 。<small>D</small>-セリンLTDは、幼若期の運動学習促進に重要な役割を果たしていることが示唆されている<ref name=Kakegawa2011><pubmed>21460832</pubmed></ref> 。


==== 膜貫通領域の機能―GluD2はチャネルとして機能するか? ====
==== 膜貫通領域の機能―GluD2はチャネルとして機能するか? ====

案内メニュー