「Held萼状シナプス」の版間の差分

ナビゲーションに移動 検索に移動
Nijcadmin (トーク) による版 39431 を取り消し
(The LinkTitles extension automatically added links to existing pages (https://github.com/bovender/LinkTitles).)
(Nijcadmin (トーク) による版 39431 を取り消し)
タグ: 取り消し
 
1行目: 1行目:
<div align="right">
<div align="right">
<font size="+1">[http://researchmap.jp/yn1144 中村 行宏]</font><[[br]]>
<font size="+1">[http://researchmap.jp/yn1144 中村 行宏]</font><br>
''東京慈恵会医科大学薬理学講座''<br>
''東京慈恵会医科大学薬理学講座''<br>
<font size="+1">[http://researchmap.jp/ttakahas 高橋 智幸]</font><br>
<font size="+1">[http://researchmap.jp/ttakahas 高橋 智幸]</font><br>
17行目: 17行目:
[[Image:CalyxFig1.png|thumb|350px|'''図1.Held萼状シナプス前終末からのパッチクランプ記録'''<br>(左)ラット脳幹スライス標本におけるシナプス前終末とシナプス後細胞(=台形体核主細胞)からの同時パッチクランプ記録の例。画面中央円形の構造が台形体核主細胞の細胞体、その細胞体上部辺縁に位置する三日月形の構造がHeld萼状シナプスの前終末である。(右)パッチ電極より蛍光色素を注入し、萼状シナプス前終末の形態を可視化した顕微鏡写真。透過光像と重ね合わせてある。]]
[[Image:CalyxFig1.png|thumb|350px|'''図1.Held萼状シナプス前終末からのパッチクランプ記録'''<br>(左)ラット脳幹スライス標本におけるシナプス前終末とシナプス後細胞(=台形体核主細胞)からの同時パッチクランプ記録の例。画面中央円形の構造が台形体核主細胞の細胞体、その細胞体上部辺縁に位置する三日月形の構造がHeld萼状シナプスの前終末である。(右)パッチ電極より蛍光色素を注入し、萼状シナプス前終末の形態を可視化した顕微鏡写真。透過光像と重ね合わせてある。]]


 [[脳幹]]の[[蝸牛神経核]]から伸長した[[軸索]]終末端が、対側[[台形体核]]の主細胞に形成するカリックス(calyx、萼)状の[[シナプス]]。ドイツの解剖学者[[wikipedia:de:Hans Held (Mediziner)|Hans Held]](1866-1942)が[[ゴルジ染色]]によって同定した<ref name=ref1>'''Hans Held'''<br>Die centrale Gehörleitung.<br>''Arch. Anat. Physiol. Anat. Abt. '' :1893, 17;201-248. [http://bsd.neuroinf.jp/wiki/ファイル:Hans_Held.pdf PDF]</ref>。[[聴覚]]神経回路を構成し、両耳間強度差による[[音源定位]]に重要な情報処理機能を果たしている。音入力を聴覚中枢へ高速かつ正確に伝達するため、前終末端が台形体核主細胞の細胞体を萼状に包み込み、入力信号に応じて多量の[[興奮性]][[神経伝達物質]][[グルタミン酸]]を放出する。1994年、Forsytheはこの巨大[[シナプス前終末]]から[[パッチクランプ記録]]を行うことに成功した<ref name=ref2><[[pubmed]]> 7837096 </pubmed></ref>。ついでシナプス前終末と台形体核主細胞からの同時パッチクランプ記録(図1)<ref name=ref3>'''高橋 智幸, 堀 哲也, 中村 行宏, 山下 貴之'''<br>プレシナプス機構のスライスパッチクランプ研究法<br>岡田泰伸編 最新パッチクランプ実験技術法, pp.96-102.  ''吉岡書店(東京)'':2011</ref>が可能になり、温血動物中枢シナプス伝達機構の研究上、格好のモデルとなっている<ref name=ref4><pubmed> 16896951 </pubmed></ref><ref name=ref5><pubmed> 22035348 </pubmed></ref>。
 [[脳幹]]の[[蝸牛神経核]]から伸長した[[軸索]]終末端が、対側[[台形体核]]の主細胞に形成するカリックス(calyx、萼)状の[[シナプス]]。ドイツの解剖学者[[wikipedia:de:Hans Held (Mediziner)|Hans Held]](1866-1942)が[[ゴルジ染色]]によって同定した<ref name=ref1>'''Hans Held'''<br>Die centrale Gehörleitung.<br>''Arch. Anat. Physiol. Anat. Abt. '' :1893, 17;201-248. [http://bsd.neuroinf.jp/wiki/ファイル:Hans_Held.pdf PDF]</ref>。[[聴覚]]神経回路を構成し、両耳間強度差による[[音源定位]]に重要な情報処理機能を果たしている。音入力を聴覚中枢へ高速かつ正確に伝達するため、前終末端が台形体核主細胞の細胞体を萼状に包み込み、入力信号に応じて多量の興奮性[[神経伝達物質]][[グルタミン酸]]を放出する。1994年、Forsytheはこの巨大[[シナプス前終末]]から[[パッチクランプ記録]]を行うことに成功した<ref name=ref2><pubmed> 7837096 </pubmed></ref>。ついでシナプス前終末と台形体核主細胞からの同時パッチクランプ記録(図1)<ref name=ref3>'''高橋 智幸, 堀 哲也, 中村 行宏, 山下 貴之'''<br>プレシナプス機構のスライスパッチクランプ研究法<br>岡田泰伸編 最新パッチクランプ実験技術法, pp.96-102.  ''吉岡書店(東京)'':2011</ref>が可能になり、温血動物中枢シナプス伝達機構の研究上、格好のモデルとなっている<ref name=ref4><pubmed> 16896951 </pubmed></ref><ref name=ref5><pubmed> 22035348 </pubmed></ref>。


 なお、calyxは「[[wj:萼|萼]](がく)」と「杯」の両方の和訳が可能であり、[[wj:腎臓|腎臓]]のcalyxのように腎杯と訳されることもある。しかし実際のシナプスの形態、特に成熟後の形態を考慮すると杯よりも花萼がふさわしく、本邦のcalyx of Held研究者間ではこの見解を支持する見方が多かったこともあり、本稿では一貫して「Held萼状シナプス」の和訳を用いた。
 なお、calyxは「[[wj:萼|萼]](がく)」と「杯」の両方の和訳が可能であり、[[wj:腎臓|腎臓]]のcalyxのように腎杯と訳されることもある。しかし実際のシナプスの形態、特に成熟後の形態を考慮すると杯よりも花萼がふさわしく、本邦のcalyx of Held研究者間ではこの見解を支持する見方が多かったこともあり、本稿では一貫して「Held萼状シナプス」の和訳を用いた。
56行目: 56行目:
 活動電位によってシナプス前終末が[[脱分極]]すると[[電位依存性カルシウムチャネル]][[Cav2]]が開口し、Ca<sup>2+</sup>の流入が[[シナプス小胞]]の[[開口放出]]を誘導する。Cav2は[[アクティブゾーン]]内部でクラスター状に分布しており、シナプス小胞はチャネルクラスターの外縁に位置していると推定される<ref name=ref18><pubmed>  25533484 </pubmed></ref>。チャネルクラスター近傍でのCa<sup>2+</sup>の一過性濃度上昇は急峻な濃度勾配([[カルシウムドメイン]])を形成するため、カルシウムチャネルクラスター外縁とシナプス小胞の距離は、[[開口放出]]の確率やタイミングを規定する。成熟した齧歯類のシナプス前終末ではカルシウムチャネルクラスター外縁とシナプス小胞の距離は約20 nmであり、この距離でCa<sup>2+</sup>濃度は数十 &mu;Mに達すると推定される<ref name=ref18 />。
 活動電位によってシナプス前終末が[[脱分極]]すると[[電位依存性カルシウムチャネル]][[Cav2]]が開口し、Ca<sup>2+</sup>の流入が[[シナプス小胞]]の[[開口放出]]を誘導する。Cav2は[[アクティブゾーン]]内部でクラスター状に分布しており、シナプス小胞はチャネルクラスターの外縁に位置していると推定される<ref name=ref18><pubmed>  25533484 </pubmed></ref>。チャネルクラスター近傍でのCa<sup>2+</sup>の一過性濃度上昇は急峻な濃度勾配([[カルシウムドメイン]])を形成するため、カルシウムチャネルクラスター外縁とシナプス小胞の距離は、[[開口放出]]の確率やタイミングを規定する。成熟した齧歯類のシナプス前終末ではカルシウムチャネルクラスター外縁とシナプス小胞の距離は約20 nmであり、この距離でCa<sup>2+</sup>濃度は数十 &mu;Mに達すると推定される<ref name=ref18 />。


 萼状シナプスにおける主要なCa<sup>2+</sup>センサーは[[シナプトタグミン2]]であり、[[シナプトタグミン]]2を欠損させた[[マウス]]では活動電位によって誘発される開口放出が著しく減少する<ref name=ref19><pubmed> 21338883 </pubmed></ref>。通常、1発の活動電位に対する小胞の[[放出確率]]は0.1~0.2<ref name=ref9 /><ref name=ref20><pubmed> 18339695 </pubmed></ref>である。放出された[[グルタミン酸]]は、シナプス間隙で数mMの濃度に達し<ref name=ref21><pubmed> 23070699 </pubmed></ref>、台形体核主細胞の[[グルタミン酸受容体]]を活性化する。放出されたグルタミン酸は拡散によってシナプス間隙から流出し、次いでシナプス前終末を取り囲む[[アストロサイト]]の突起から[[グルタミン酸トランスポーター]](GLAST)を介して回収される。
 萼状シナプスにおける主要なCa<sup>2+</sup>センサーは[[シナプトタグミン2]]であり、シナプトタグミン2を欠損させた[[マウス]]では活動電位によって誘発される開口放出が著しく減少する<ref name=ref19><pubmed> 21338883 </pubmed></ref>。通常、1発の活動電位に対する小胞の[[放出確率]]は0.1~0.2<ref name=ref9 /><ref name=ref20><pubmed> 18339695 </pubmed></ref>である。放出された[[グルタミン酸]]は、シナプス間隙で数mMの濃度に達し<ref name=ref21><pubmed> 23070699 </pubmed></ref>、台形体核主細胞の[[グルタミン酸受容体]]を活性化する。放出されたグルタミン酸は拡散によってシナプス間隙から流出し、次いでシナプス前終末を取り囲む[[アストロサイト]]の突起から[[グルタミン酸トランスポーター]](GLAST)を介して回収される。


=== シナプス後細胞に発生するシナプス電流と活動電位 ===
=== シナプス後細胞に発生するシナプス電流と活動電位 ===
79行目: 79行目:
=== シナプス伝達の調節機構 ===
=== シナプス伝達の調節機構 ===
==== 伝達物質放出の修飾 ====
==== 伝達物質放出の修飾 ====
 シナプス前終末には、[[代謝活性型グルタミン酸受容体]]、代謝型[[GABAB受容体|GABA<sub>B</sub>受容体]]、[[アデノシン]][[A1受容体]]、[[ノルアドレナリン]][[α2受容体]]、[[カンナビノイド]][[CB1受容体]]、[[セロトニン]][[5-HT1B受容体|5-HT<sub>1B</sub>受容体]]が存在する。これら[[Gタンパク質共役型受容体]]の活性化によって、[[三量体Gタンパク質]]から解離された&beta;&gamma;サブユニットは、電位依存性カルシウムチャネルに結合しCa<sup>2+</sup>電流を抑制し、これによって伝達物質放出を抑制する<ref name=ref40>'''Tomoyuki Takahashi, Yoshinao Kajikawa, Masahiro Kimura, Naoto Saitoh, Tetsuhiro Tsujimoto'''<br> Presynaptic mechanism underlying regulation of transmitter release by G protein coupled receptors.<br>''Korean J. Physiol. Pharmacol. '' :2004, 8(2):69-76.</ref><ref name=ref41><pubmed> 17067296 </pubmed></ref>。このGタンパク質を介したシナプス伝達の抑制は、萼状シナプスにおけるシナプス前性の主要なシナプス伝達調節機構である。Gタンパク質共役受容体のうち、セロトニン5H-T<sub>1B</sub>受容体、アデノシンA1受容体は生後2週齢までに消失するが、代謝活性型グルタミン酸受容体、[[GABA]]<sub>B</sub>受容体を介した抑制は、生後発達を通じて存続する。しかし、これらの代謝活性型受容体のリガンドの由来は必ずしも明らかでない。
 シナプス前終末には、[[代謝活性型グルタミン酸受容体]]、代謝型[[GABAB受容体|GABA<sub>B</sub>受容体]]、[[アデノシン]][[A1受容体]]、[[ノルアドレナリン]][[α2受容体]]、[[カンナビノイド]][[CB1受容体]]、[[セロトニン]][[5-HT1B受容体|5-HT<sub>1B</sub>受容体]]が存在する。これら[[Gタンパク質共役型受容体]]の活性化によって、[[三量体Gタンパク質]]から解離された&beta;&gamma;サブユニットは、電位依存性カルシウムチャネルに結合しCa<sup>2+</sup>電流を抑制し、これによって伝達物質放出を抑制する<ref name=ref40>'''Tomoyuki Takahashi, Yoshinao Kajikawa, Masahiro Kimura, Naoto Saitoh, Tetsuhiro Tsujimoto'''<br> Presynaptic mechanism underlying regulation of transmitter release by G protein coupled receptors.<br>''Korean J. Physiol. Pharmacol. '' :2004, 8(2):69-76.</ref><ref name=ref41><pubmed> 17067296 </pubmed></ref>。このGタンパク質を介したシナプス伝達の抑制は、萼状シナプスにおけるシナプス前性の主要なシナプス伝達調節機構である。Gタンパク質共役受容体のうち、セロトニン5H-T<sub>1B</sub>受容体、アデノシンA1受容体は生後2週齢までに消失するが、代謝活性型グルタミン酸受容体、GABA<sub>B</sub>受容体を介した抑制は、生後発達を通じて存続する。しかし、これらの代謝活性型受容体のリガンドの由来は必ずしも明らかでない。


 [[シナプス前終末]]の膜電位は伝達物質の放出に影響を与える。シナプス前終末に発現するシナプス前終末[[グリシン受容体]]の開口<ref name=ref42><pubmed> 11385573 </pubmed></ref>やカリウムチャネル[[Kv7.5]]の不活化<ref name=ref43><pubmed> 21666672 </pubmed></ref>は[[膜電位]]を上昇させる(シナプス前終末内部のCl<sup>-</sup>濃度は約20 mMと細胞体に比べて高く<ref name=ref56><pubmed> 17079672 </pubmed></ref>Cl<sup>-</sup>平衡電位が静止膜電位より浅いため、グリシン受容体の開口はCl<sup>-</sup>の細胞外への流出をもたらす)。この活動電位の閾値には到達しない膜電位上昇は、電位依存性カルシウムチャネルの[[開口確率]]を増大させ、前終末内のCa<sup>2+</sup>濃度上昇につながる。Ca<sup>2+</sup>濃度上昇は[[自発性微小シナプス電流]]の頻度を増加させるとともに、活動電位によって誘発される小胞の放出を促進させる<ref name=ref44><pubmed> 19403620 </pubmed></ref>。
 [[シナプス前終末]]の膜電位は伝達物質の放出に影響を与える。シナプス前終末に発現するシナプス前終末[[グリシン受容体]]の開口<ref name=ref42><pubmed> 11385573 </pubmed></ref>やカリウムチャネル[[Kv7.5]]の不活化<ref name=ref43><pubmed> 21666672 </pubmed></ref>は[[膜電位]]を上昇させる(シナプス前終末内部のCl<sup>-</sup>濃度は約20 mMと細胞体に比べて高く<ref name=ref56><pubmed> 17079672 </pubmed></ref>Cl<sup>-</sup>平衡電位が静止膜電位より浅いため、グリシン受容体の開口はCl<sup>-</sup>の細胞外への流出をもたらす)。この活動電位の閾値には到達しない膜電位上昇は、電位依存性カルシウムチャネルの[[開口確率]]を増大させ、前終末内のCa<sup>2+</sup>濃度上昇につながる。Ca<sup>2+</sup>濃度上昇は[[自発性微小シナプス電流]]の頻度を増加させるとともに、活動電位によって誘発される小胞の放出を促進させる<ref name=ref44><pubmed> 19403620 </pubmed></ref>。

案内メニュー