「IPS細胞」の版間の差分

ナビゲーションに移動 検索に移動
983 バイト追加 、 2012年3月28日 (水)
編集の要約なし
編集の要約なし
編集の要約なし
59行目: 59行目:
== 特定の細胞系譜への分化誘導  ==
== 特定の細胞系譜への分化誘導  ==


 これまでにマウスおよびヒトiPS細胞から分化誘導が試みられた細胞系譜は多岐に亘る。例えば、神経系(神経幹細胞、[[運動ニューロン]]等の各種ニューロン、[[アストロサイト]]、[[オリゴデンドロサイト]])、眼・耳([[網膜色素上皮細胞]]、[[視細胞]]、[[網膜神経節細胞]]、[[感覚有毛細胞]])、[[表皮]](ケラチノサイト、[[メラノサイト]])、[[血球系]]([[造血幹細胞]]、[[マクロファージ]]、[[樹状細胞]]、[[T細胞]]、[[ナチュラルキラーT細胞]]、[[好中球]]、[[巨核球]]、[[血小板]]、[[赤血球]])、心血管系([[心筋細胞]]、[[心血管]]、[[血管内皮]]、[[壁細胞]])、筋([[骨格筋]]、[[平滑筋]])、[[骨]]・[[間葉系]]([[間葉系幹細胞]]、[[造骨細胞]]、[[破骨細胞]]、[[軟骨]]、[[白色]]・[[褐色脂肪細胞]])、歯([[エナメル芽細胞]])、消化器系([[肝芽細胞]]、[[肝細胞]]、[[後腎間充織]]、[[尿細管細胞]]、[[腸管組織]]、[[膵島細胞]])、[[生殖細胞]]等が挙げられる。  
 これまでにマウスおよびヒトiPS細胞から分化誘導が試みられた細胞系譜は多岐に亘る。例えば、神経系(神経幹細胞、[[運動ニューロン]]等の各種ニューロン、[[アストロサイト]]、[[オリゴデンドロサイト]])、眼・耳([[網膜色素上皮細胞]]、[[視細胞]]、[[網膜神経節細胞]]、[[感覚有毛細胞]])、[[wikipedia:JA:表皮|表皮]](ケラチノサイト、[[wikipedia:JA:メラノサイト|メラノサイト]])、[[wikipedia:JA:血球系|血球系]]([[wikipedia:JA:造血幹細胞|造血幹細胞]]、[[wikipedia:JA:マクロファージ|マクロファージ]]、[[wikipedia:JA:樹状細胞|樹状細胞]]、[[wikipedia:JA:T細胞|T細胞]]、[[wikipedia:JA:ナチュラルキラーT細胞|ナチュラルキラーT細胞]]、[[wikipedia:JA:好中球|好中球]]、[[wikipedia:JA:巨核球|巨核球]]、[[wikipedia:JA:血小板|血小板]]、[[wikipedia:JA:赤血球|赤血球]])、心血管系([[wikipedia:JA:心筋細胞|心筋細胞]]、[[wikipedia:JA:心血|心血管]]、[[wikipedia:JA:血管内皮|血管内皮]]、[[wikipedia:JA:壁細胞|壁細胞]])、筋([[wikipedia:JA:骨格筋|骨格筋]]、[[wikipedia:JA:平滑筋|平滑筋]])、[[wikipedia:JA:骨|骨]]・[[wikipedia:JA:間葉系|間葉系]]([[wikipedia:JA:間葉系幹細胞|間葉系幹細胞]]、[[wikipedia:JA:造骨細胞|造骨細胞]]、[[wikipedia:JA:破骨細胞|破骨細胞]]、[[wikipedia:JA:軟骨|軟骨]]、[[wikipedia:JA:白色|白色]]・[[wikipedia:JA:褐色脂肪細胞|褐色脂肪細胞]])、歯([[wikipedia:JA:エナメル芽細胞|エナメル芽細胞]])、消化器系([[wikipedia:JA:肝芽細胞|肝芽細胞]]、[[wikipedia:JA:肝細胞|肝細胞]]、[[wikipedia:JA:後腎間充織|後腎間充織]]、[[wikipedia:JA:尿細管細胞|尿細管細胞]]、[[wikipedia:JA:腸管組織|腸管組織]]、[[wikipedia:JA:膵島細胞|膵島細胞]])、[[wikipedia:JA:生殖細胞|生殖細胞]]等が挙げられる。  


== 医療応用の可能性  ==
== 医療応用の可能性  ==
65行目: 65行目:
=== 安全性  ===
=== 安全性  ===


 ヒトiPS細胞を用いた細胞移植医療を目指す上で、品質評価と安全性の確保は最重要事項である。実際、iPS細胞の治療用途には克服すべき様々な懸念材料がある。例えば、c-MycをゲノムDNAに導入したマウスiPS細胞は、キメラマウスおよびその子孫において高頻度に腫瘍を誘発する<ref name="ref5" />。これらの腫瘍では外来性c-Mycが再活性化しており、初期化因子のゲノムへの組込みはiPS細胞利用における永続的なリスクファクターであることが示された。また、分化誘導時に残存する未分化細胞、とりわけ「分化抵抗性」細胞の混入は、移植レシピエントにおいてテラトーマ形成を引き起こす。慶應義塾大学の三浦恭子博士らは、複数のマウスiPS細胞株から分化誘導した神経幹細胞(ニューロスフェア)を免疫不全マウス成体脳へと移植し、腫瘍形成の有無について検証を行った<ref><pubmed> 19590502 </pubmed></ref>。その結果、移植を受けたマウス全体の4割において未分化細胞に起因するテラトーマ形成が観察された。こうした造腫瘍性はiPS細胞樹立過程におけるc-Mycの導入や薬剤選択の有無ではなく、iPS細胞の起源と相関(胎仔由来では低頻度、成体由来では高頻度)していた。一方、成体マウスの肝実質細胞由来のiPS細胞はキメラマウスへと寄与するものの、周産期において原因不明の高い死亡率を示すことが報告されている。極めて人工的な手法で作成される細胞であるがためにiPS細胞の基本特性について不明な点も多く、医療適正のあるiPS細胞株を精査、選別、作成するための方法の開発が必要不可欠である。
 ヒトiPS細胞を用いた細胞移植医療を目指す上で、品質評価と安全性の確保は最重要事項である。実際、iPS細胞の治療用途には克服すべき様々な懸念材料がある。例えば、c-MycをゲノムDNAに導入したマウスiPS細胞は、キメラマウスおよびその子孫において高頻度に腫瘍を誘発する<ref name="ref5" />。これらの腫瘍では外来性c-Mycが再活性化しており、初期化因子のゲノムへの組込みはiPS細胞利用における永続的なリスクファクターであることが示された。また、分化誘導時に残存する未分化細胞、とりわけ「分化抵抗性」細胞の混入は、移植レシピエントにおいてテラトーマ形成を引き起こす。[[wikipedia:JA:慶應義塾大学|慶應義塾大学]]の三浦恭子博士らは、複数のマウスiPS細胞株から分化誘導した神経幹細胞(ニューロスフェア)を免疫不全マウス成体脳へと移植し、腫瘍形成の有無について検証を行った<ref><pubmed> 19590502 </pubmed></ref>。その結果、移植を受けたマウス全体の4割において未分化細胞に起因するテラトーマ形成が観察された。こうした造腫瘍性はiPS細胞樹立過程におけるc-Mycの導入や薬剤選択の有無ではなく、iPS細胞の起源と相関(胎仔由来では低頻度、成体由来では高頻度)していた。一方、成体マウスの肝実質細胞由来のiPS細胞は[[wikipedia:JA:キメラマウス|キメラマウス]]へと寄与するものの、[[wikipedia:JA:周産期|周産期]]において原因不明の高い死亡率を示すことが報告されている。極めて人工的な手法で作成される細胞であるがためにiPS細胞の基本特性について不明な点も多く、医療適正のあるiPS細胞株を精査、選別、作成するための方法の開発が必要不可欠である。


=== 細胞移植治療  ===
=== 細胞移植治療  ===


 最も早期の実用化が期待されるヒトiPS細胞の利用には創薬研究が挙げられる。例えば、心機能におよぼす副作用の評価系としてiPS細胞由来の心筋細胞を用いた薬剤誘発性QT延長試験が提示されており、こうした利用を見据えてヒトiPS細胞由来の心筋細胞、ドーパミン神経細胞、肝細胞が既に市販ベースにある。一方、細胞移植治療に向けた実践的な基礎研究も活発に進められている。iPS細胞を用いた最初の自家移植治療モデルとして、Rudolf Jaenisch博士らは鎌状赤血球貧血症マウスからiPS細胞を作成して疾患原因遺伝子の修復を施し、分化誘導した造血幹細胞による自家移植治療の実例を示した<ref><pubmed> 18063756 </pubmed></ref>。同グループは、マウスiPS細胞から分化誘導したドーパミン神経をパーキンソン病モデルラット成体脳に異種移植し、行動改善がみられることについても報告している<ref><pubmed> 18391196 </pubmed></ref>。一方、パーキンソン病患者のiPS細胞由来のドーパミン神経を異種移植したラットにおいても、同様に運動機能の改善がみられている。また、正常マウスのiPS細胞から内皮細胞を誘導し、血友病Aモデルマウスの肝臓へと他家移植した治療実験例もある。国内では、慶應義塾大学の岡野栄之博士のグループがマウスおよびヒトiPS細胞から分化誘導したニューロスフェアを脊髄損傷モデルマウスに移植し、下肢運動機能に改善が認められることを報告している<ref><pubmed> 20615974 </pubmed></ref><ref><pubmed> 21949375 </pubmed></ref>。脊髄損傷に関しては、奈良先端科学技術大学院大学の中島欽一博士らもヒトiPS細胞からの神経幹細胞(神経上皮様幹細胞)分化誘導と移植を行い、モデルマウスの運動機能が回復することを確認している。最近では、iPS細胞を介さずに任意の細胞種を直接誘導する「ダイレクトリプログラミング」の研究も盛んに進められており、iPS細胞以外の選択肢も並行して開発されることが期待される。  
 最も早期の実用化が期待されるヒトiPS細胞の利用には[[創薬]]研究が挙げられる。例えば、心機能におよぼす副作用の評価系としてiPS細胞由来の心筋細胞を用いた薬剤誘発性QT延長試験が提示されており、こうした利用を見据えてヒトiPS細胞由来の心筋細胞、ドーパミン神経細胞、肝細胞が既に市販ベースにある。一方、細胞移植治療に向けた実践的な基礎研究も活発に進められている。iPS細胞を用いた最初の自家移植治療モデルとして、Rudolf Jaenisch博士らは鎌状赤血球貧血症マウスからiPS細胞を作成して疾患原因遺伝子の修復を施し、分化誘導した造血幹細胞による自家移植治療の実例を示した<ref><pubmed> 18063756 </pubmed></ref>。同グループは、マウスiPS細胞から分化誘導したドーパミン神経をパーキンソン病モデルラット成体脳に異種移植し、行動改善がみられることについても報告している<ref><pubmed> 18391196 </pubmed></ref>。一方、パーキンソン病患者のiPS細胞由来のドーパミン神経を異種移植したラットにおいても、同様に運動機能の改善がみられている。また、正常マウスのiPS細胞から内皮細胞を誘導し、血友病Aモデルマウスの肝臓へと他家移植した治療実験例もある。国内では、慶應義塾大学の岡野栄之博士のグループがマウスおよびヒトiPS細胞から分化誘導したニューロスフェアを脊髄損傷モデルマウスに移植し、下肢運動機能に改善が認められることを報告している<ref><pubmed> 20615974 </pubmed></ref><ref><pubmed> 21949375 </pubmed></ref>。脊髄損傷に関しては、奈良先端科学技術大学院大学の中島欽一博士らもヒトiPS細胞からの神経幹細胞(神経上皮様幹細胞)分化誘導と移植を行い、モデルマウスの運動機能が回復することを確認している。最近では、iPS細胞を介さずに任意の細胞種を直接誘導する「ダイレクトリプログラミング」の研究も盛んに進められており、iPS細胞以外の選択肢も並行して開発されることが期待される。  


== 新たな課題  ==
== 新たな課題  ==

案内メニュー